Integrating Trig Functions

dagr8est

Junior Member
Joined
Nov 2, 2004
Messages
128
Sorry, this is kind of hard to type in computer language so bare with me. Pretend that "S" is the integral symbol.

Question:
Solve the indefinite integral: S sin^2(x/4)dx

Let x/4 = a
da/dx = 1/4
da = 1/4dx

S sin^2(x/4)dx
= 4 S sin^2(a)da

Is that the correct substitution and what am I supposed to do after that?
 
Hello, dagr8est!


With \(\displaystyle \sin^2\theta\) or \(\displaystyle \cos^2\theta\), we need these identities:

\(\displaystyle \L\;\;\;[1]\;\sin^2\theta \:=\:\frac{1\,-\,\cos2\theta}{2}\;\;\;\;\;[2]\;\cos^2\theta\:=\:\frac{1\,+\,2\cos\theta}{2}\)


\(\displaystyle \L\int \sin^2\left(\frac{x}{4}\right)\,dx\)

Using [1], we have: \(\displaystyle \L\:\frac{1}{2}\int\left[1\,-\,\cos\left(\frac{x}{2}\right)\right]\,dx \;=\;\frac{1}{2}\int dx \,-\,\frac{1}{2}\int\cos\left(\frac{x}{2}\right)\,dx\)

Then for the second integral, let \(\displaystyle \L\, u \,=\,\frac{x}{2}\)

 
Top