\(\displaystyle 10te^{-t/3} \ = \ 10 \sum_{n=0}^{\infty}\frac{(-1)^n t^{n+1}}{3^{n}n!} \ converges \ for \ all \ t \ (Maclauren \ Series).\)
\(\displaystyle \int [10te^{-t/3}]dt \ = \ \int\bigg[10 \sum_{n=0}^{\infty}\frac{(-1)^n t^{n+1}}{3^{n}n!} \bigg]dt\)
\(\displaystyle Hence, \ \int [10te^{-t/3}]dt \ = \ 10 \sum_{n=0}^{\infty}\frac{(-1)^n t^{n+2}}{3^{n}n!(n+2)}\)
\(\displaystyle Check: \ \int_{0}^{15}[10te^{-t/3}]dt \ = \ 10 \sum_{n=0}^{\infty}\frac{(-1)^n 15^{n+2}}{3^{n}n!(n+2)} \ \dot= \ 86.3615086205\)
\(\displaystyle However, \ since \ "the \ bottomless \ pit" \ doesn't \ understand \ I \ by \ P, \ we \ are \ obviously \ dealing \ with\)
\(\displaystyle \ a \ fisherman.\)