Integrate tan^5(x/4)dx with trig identities and substitution

quazzi

New member
Joined
Jan 24, 2007
Messages
3
Can't get this (tan(x/4))^5dx problem, looks like it would use the power reducing formula but get even more screwes up. help appreciated.
 
\(\displaystyle \begin{array}{rcl}
\tan ^5 (u) & = & \left( {\sec ^2 (u) - 1} \right)^2 \tan (u) \\
& = & \left( {\sec ^4 (u) - 2\sec ^2 (u) + 1} \right)\tan (u) \\
\end{array}\)
The last expression is easy to intergrate.
 
Re: Integrate tan^5(x/4)dx with trig identities and substitu

Hello, quazzi!

\(\displaystyle \L\int\tan^5\left(\frac{x}{4}\right)\,dx\)

I would do it like this . . . Let θ=x4\displaystyle \theta\,=\,\frac{x}{4}

tan5θ  =  tan4θtanθ\displaystyle \tan^5\theta \;=\;\tan^4\theta\cdot\tan\theta

. . . . . .=  (tan2θ)2tanθ\displaystyle = \;\left(\tan^2\theta\right)^2\tan\theta

. . . . . .=  (sec2θ1)2tanθ\displaystyle = \;\left(\sec^2\theta\,-\,1\right)^2\tan\theta

. . . . . .=  (sec4θ2sec2θ+1)tanθ\displaystyle = \;\left(\sec^4\theta\,-\,2\sec^2\theta\,+\,1\right)\tan\theta

. . . . . .=  sec4θtanθ2sec2θtanθ+tanθ\displaystyle = \;\sec^4\theta\cdot\tan\theta\,-\,2\sec^2\theta\cdot\tan\theta\,+\,\tan\theta\\

pka did all this . . . now I'll complete the solution.


We have: \(\displaystyle \:\L\int\sec^4\theta\cdot\tan\theta\,d\theta \:-\:2\int\sec^2\theta\cdot\tan\theta\,d\theta \,+\,\int\tan\theta\,d\theta\)


For the first integral, we have: \(\displaystyle \L\:\int\sec^3\theta(\sec\theta\cdot\tan\theta\,d\theta)\)
Let u=secθ\displaystyle u \:=\:\sec\theta

For the second integral, we have: \(\displaystyle \L\:\int\tan\theta(\sec^2\theta\,d\theta)\)
Let u=tanθ\displaystyle u \:=\:\tan\theta

For the third integral, a formula: \(\displaystyle \L\:\int\tan\theta\,d\theta\:=\:-\ln|\cos\theta|\,+\,C\)

 
Top