Integrate tan^2x

Derive the general reduction formula and you can use it for any power of tangent:

\(\displaystyle \L\\\int{tan^{n}(x)}dx\\=\int{tan^{n-2}(x)tan^{2}(x)}dx\\=\int{tan^{n-2}(x)(sec^{2}(x)-1)}dx\\=\int{tan^{n-2}(x)sec^{2}(x)}dx-\int{tan^{n-2}(x)}dx\\=\frac{tan^{n-2}}{n-1}-\int{tan^{n-2}(x)}dx\)
 
Hello, dagr8est!

\(\displaystyle \L\int\tan^2x\,dx\:=\:\int\left(\sec^2x\,-\,1)\,dx\)

Can you finish it now?

 
Top