There is a special substitution you can use. It's called the Weierstrauss substitution(I hope I spelled that right).
\(\displaystyle \L\\\int\sqrt{2-2cos(x)}dx\)
Use \(\displaystyle \L\\u=tan(\frac{x}{2});\;\ cos(x)=\frac{1-x^{2}}{1+x^{2}};\;\ dx=\frac{2}{1+u^{2}}du\)
\(\displaystyle \L\\\int\sqrt{2-\frac{1-u^{2}}{1+u^{2}}}\cdot\frac{2}{1+u^{2}}du\)
Which simplifies to:
\(\displaystyle =\L\\\int\frac{4u}{(u^{2}+1)^{\frac{3}{2}}}du\)
Now, let \(\displaystyle \L\\w=u^{2}+1;\;\ dw=2udu;\;\ \frac{dw}{2}=udu\)
\(\displaystyle \L\\2\int\frac{1}{w^{\frac{3}{2}}}dw\)
\(\displaystyle =\L\\\frac{-4}{\sqrt{w}}\)
Resub:
\(\displaystyle \L\\\frac{-4}{\sqrt{u^{2}+1}}\)
Resub again:
\(\displaystyle \L\\\frac{-4}{\sqrt{tan^{2}(\frac{x}{2})+1}}+C\)
As Soroaban says, TA...DAA!!!
This works on the interval 0 to Pi.