Integrate sqrt(2-2cosx)dx

dagr8est

Junior Member
Joined
Nov 2, 2004
Messages
128
Need some help with this one. Integrate sqrt(2-2cosx)dx. I don't see any trig identities that would make this simpler or any substitutions to make it easier so I'm stuck.
 
I don't know if this will help much, but The Integrator gives the integral of "Sqrt[2-2Cos[x]]" as being:

. . . . .\(\displaystyle \L -2\, \sqrt{2\, -\, 2\cos{(x)}}\, \cot{\left(\frac{x}{2}\right)}\)

Eliz.
 
There is a special substitution you can use. It's called the Weierstrauss substitution(I hope I spelled that right).


\(\displaystyle \L\\\int\sqrt{2-2cos(x)}dx\)

Use \(\displaystyle \L\\u=tan(\frac{x}{2});\;\ cos(x)=\frac{1-x^{2}}{1+x^{2}};\;\ dx=\frac{2}{1+u^{2}}du\)

\(\displaystyle \L\\\int\sqrt{2-\frac{1-u^{2}}{1+u^{2}}}\cdot\frac{2}{1+u^{2}}du\)

Which simplifies to:

\(\displaystyle =\L\\\int\frac{4u}{(u^{2}+1)^{\frac{3}{2}}}du\)


Now, let \(\displaystyle \L\\w=u^{2}+1;\;\ dw=2udu;\;\ \frac{dw}{2}=udu\)

\(\displaystyle \L\\2\int\frac{1}{w^{\frac{3}{2}}}dw\)

\(\displaystyle =\L\\\frac{-4}{\sqrt{w}}\)

Resub:

\(\displaystyle \L\\\frac{-4}{\sqrt{u^{2}+1}}\)

Resub again:

\(\displaystyle \L\\\frac{-4}{\sqrt{tan^{2}(\frac{x}{2})+1}}+C\)

As Soroaban says, TA...DAA!!!

This works on the interval 0 to Pi.
 
I tried this ...

\(\displaystyle \L \sqrt{2 - 2cosx} = \sqrt{2}\sqrt{1 - cosx}\)

\(\displaystyle \L \sqrt{1 - cosx}*\frac{\sqrt{1 + cosx}}{\sqrt{1 + cosx}} =\)

\(\displaystyle \L \frac{\sqrt{1 - cos^2x}}{\sqrt{1 + cosx}} =\)

\(\displaystyle \L \frac{\sqrt{sin^2x}}{\sqrt{1 + cosx}} =\)

for \(\displaystyle \L sinx > 0\) ...

\(\displaystyle \L \frac{sinx}{\sqrt{1 + cosx}}\)

\(\displaystyle \L \sqrt{2} \int \frac{sinx}{\sqrt{1 + cosx}} dx\)

let \(\displaystyle \L u = 1 + cosx\)
\(\displaystyle \L du = -sinx dx\)

\(\displaystyle \L -\sqrt{2} \int \frac{-sinx}{\sqrt{1 + cosx}} dx\)

\(\displaystyle \L -\sqrt{2} \int \frac{1}{\sqrt{u}} du\)

\(\displaystyle \L -\sqrt{2}(2\sqrt{u}) + C\)

\(\displaystyle \L -2\sqrt{2}\sqrt{1 + cosx} + C\)
 
Hello, dagr8est!

\(\displaystyle \L \int\sqrt{2\,-\,2\cos x}\,dx\)

I guess no one noticed that: \(\displaystyle \,2\,-\,2\cos x\;=\;2(1\,-\,\cos x) \;=\;2\left(2\sin^2\frac{x}{2}\right) \;= \;\L4\sin^2\left(\frac{x}{2}\right)\)
 
soroban said:
Hello, dagr8est!

\(\displaystyle \L \int\sqrt{2\,-\,2\cos x}\,dx\)

I guess no one noticed that: \(\displaystyle \,2\,-\,2\cos x\;=\;2(1\,-\,\cos x) \;=\;2\left(2\sin^2\frac{x}{2}\right) \;= \;\L4\sin^2\left(\frac{x}{2}\right)\)

O_O I think that's the intended solution because all of those other solutions are way over my head. Thanks everyone.
 
Top