\(\displaystyle If \ we \ let \ u = e^{t}, \ then \ du = e^{t}dt \ or \ dt = \frac{du}{u}\)
\(\displaystyle Ergo \ \int{\frac{e^{4t}dt}{e^{2t}+3e^{t}+2}} = \int{\frac{u^{3}du}{u^{2}+3u+2}}, \ not \ \int{\frac{u^{4}du}{u^{2}+3u+2}}.\)
Now use partial fractions and solve.