Integrals

Hello, KEYWEST17!

Recall that:   eudu=eu+C\displaystyle \text{Recall that: }\;\int e^u\,du \:=\:e^u + C


x6ex7dx\displaystyle \displaystyle \int x^6e^{x^7}\,dx

\(\displaystyle \text{We have: }\,\int e^{x^7}\left(x^6\,dx)\)

Let: u=x7du=7x6dxx6dx=17du\displaystyle \text{Let: }\:u \,=\,x^7 \quad\Rightarrow\quad du \,=\,7x^6\,dx \quad\Rightarrow\quad x^6\,dx \:=\:\tfrac{1}{7}\,du

Substitute:   eu(17du)  =  17eudu  =  17eu+C\displaystyle \text{Substitute: }\;\int e^u\left(\tfrac{1}{7}\,du\right) \;=\;\tfrac{1}{7}\int e^u\,du \;=\;\tfrac{1}{7}e^u + C

Back-substitute: 17ex7+C\displaystyle \text{Back-substitute: }\:\tfrac{1}{7}e^{x^7} + C

 
Top