\(\displaystyle \int_{-2}^{-9}\frac{\sqrt{x^{2}-1}}{x^{3}}dx \ = \ .367424, \ (trusty \ TI-89)\)
\(\displaystyle Let \ x \ = \ sec(t), \ \implies \ dx \ = \ sec(t)tan(t)dt\)
\(\displaystyle Hence, \ \int_{2\pi/3}^{arcsin(1/9)+\pi/2}\frac{[\sqrt{sec^{2}(t)-1}]sec(t)tan(t)}{sec^{3}(t)}dt\)
\(\displaystyle = \ \int_{2\pi/3}^{arcsin(1/9)+\pi/2}\frac{[\sqrt{tan^{2}(t)]}sec(t)tan(t)}{sec^{3}(t)}dt\)
\(\displaystyle = \ \int_{2\pi/3}^{arcsin(1/9)+\pi/2}\frac{|tan(t)|tan(t)}{sec^{2}(t)}dt, \ |tan(t)| \ = \ -tan(t), \ 2nd \ quadrant\)
\(\displaystyle = \ -\int_{2\pi/3}^{arcsin(1/9)+\pi/2}sin^{2}(t)dt \ = \ -1/2\int_{2\pi/3}^{arcsin(1/9)+\pi/2}(1-cos(2t))dt\)
\(\displaystyle = \ -1/2\bigg[t-\frac{sin(2t)}{2}\bigg]_{2\pi/3}^{arcsin(1/9)+\pi/2} \ = \ -1/2[t-sin(t)cos(t)]_{2\pi/3}^{arcsin(1/9)+\pi/2}\)
\(\displaystyle = \ -1/2[arcsin(1/9)+\pi/2-(4\sqrt5/9)(-1/9)-(2\pi/3-(\sqrt3/2)(-1/2))] \ = \ .367424 \ QED\)