Integral

123

New member
Joined
Nov 6, 2010
Messages
46
\(\displaystyle \int_{-\pi}^{2\pi}sin\frac{x}{2}dx=...\)
 
Answer is 2, but i miss something, when I solve it my answer is wrong.
 
Hello, 123!

\(\displaystyle \int_{\text{-}\pi}^{2\pi}\!\!\sin\frac{x}{2}\,dx\)

\(\displaystyle \int^{2\pi}_{\text{-}\pi}\!\!\sin\frac{x}{2}\,dx \;=\;\text{-}2\cos\frac{x}{2}\bigg]^{2\pi}_{\text{-}\pi} \;=\;\bigg[\text{-}2\cos\pi\bigg] - \bigg[\text{-}2\cos\left(\text{-}\tfrac{\pi}{2}\right)\bigg] \;=\;(\text{-}2)(\text{-}1) - (\text{-}2)(0) \;=\;2\)

 
Make the substitution \(\displaystyle u=\frac{x}{2}\)

Then, \(\displaystyle du=\frac{1}{2}dx\Rightarrow 2du=dx\)

That is why.

Upon making the subs we get \(\displaystyle 2\int sin(u)du\)

Now integrate and you get Soroban's result.
 
Top