\int_{-\pi}^{2\pi}sin\frac{x}{2}dx=...
1 123 New member Joined Nov 6, 2010 Messages 46 Mar 10, 2011 #1 ∫−π2πsinx2dx=...\displaystyle \int_{-\pi}^{2\pi}sin\frac{x}{2}dx=...∫−π2πsin2xdx=...
1 123 New member Joined Nov 6, 2010 Messages 46 Mar 11, 2011 #2 Answer is 2, but i miss something, when I solve it my answer is wrong.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Mar 11, 2011 #3 Hello, 123! ∫-π2π sinx2 dx\displaystyle \int_{\text{-}\pi}^{2\pi}\!\!\sin\frac{x}{2}\,dx∫-π2πsin2xdx Click to expand... ∫-π2π sinx2 dx = -2cosx2]-π2π = [-2cosπ]−[-2cos(-π2)] = (-2)(-1)−(-2)(0) = 2\displaystyle \int^{2\pi}_{\text{-}\pi}\!\!\sin\frac{x}{2}\,dx \;=\;\text{-}2\cos\frac{x}{2}\bigg]^{2\pi}_{\text{-}\pi} \;=\;\bigg[\text{-}2\cos\pi\bigg] - \bigg[\text{-}2\cos\left(\text{-}\tfrac{\pi}{2}\right)\bigg] \;=\;(\text{-}2)(\text{-}1) - (\text{-}2)(0) \;=\;2∫-π2πsin2xdx=-2cos2x]-π2π=[-2cosπ]−[-2cos(-2π)]=(-2)(-1)−(-2)(0)=2
Hello, 123! ∫-π2π sinx2 dx\displaystyle \int_{\text{-}\pi}^{2\pi}\!\!\sin\frac{x}{2}\,dx∫-π2πsin2xdx Click to expand... ∫-π2π sinx2 dx = -2cosx2]-π2π = [-2cosπ]−[-2cos(-π2)] = (-2)(-1)−(-2)(0) = 2\displaystyle \int^{2\pi}_{\text{-}\pi}\!\!\sin\frac{x}{2}\,dx \;=\;\text{-}2\cos\frac{x}{2}\bigg]^{2\pi}_{\text{-}\pi} \;=\;\bigg[\text{-}2\cos\pi\bigg] - \bigg[\text{-}2\cos\left(\text{-}\tfrac{\pi}{2}\right)\bigg] \;=\;(\text{-}2)(\text{-}1) - (\text{-}2)(0) \;=\;2∫-π2πsin2xdx=-2cos2x]-π2π=[-2cosπ]−[-2cos(-2π)]=(-2)(-1)−(-2)(0)=2
1 123 New member Joined Nov 6, 2010 Messages 46 Mar 12, 2011 #4 soroban said: ∫-π2π sinx2 dx = -2cosx2]-π2π =\displaystyle \int^{2\pi}_{\text{-}\pi}\!\!\sin\frac{x}{2}\,dx \;=\;\text{-}2\cos\frac{x}{2}\bigg]^{2\pi}_{\text{-}\pi} \;=∫-π2πsin2xdx=-2cos2x]-π2π=..... Click to expand... Click to expand... Thanks, but why −2cos\displaystyle -2cos−2cos?
soroban said: ∫-π2π sinx2 dx = -2cosx2]-π2π =\displaystyle \int^{2\pi}_{\text{-}\pi}\!\!\sin\frac{x}{2}\,dx \;=\;\text{-}2\cos\frac{x}{2}\bigg]^{2\pi}_{\text{-}\pi} \;=∫-π2πsin2xdx=-2cos2x]-π2π=..... Click to expand... Click to expand... Thanks, but why −2cos\displaystyle -2cos−2cos?
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,216 Mar 12, 2011 #5 Make the substitution u=x2\displaystyle u=\frac{x}{2}u=2x Then, du=12dx⇒2du=dx\displaystyle du=\frac{1}{2}dx\Rightarrow 2du=dxdu=21dx⇒2du=dx That is why. Upon making the subs we get 2∫sin(u)du\displaystyle 2\int sin(u)du2∫sin(u)du Now integrate and you get Soroban's result.
Make the substitution u=x2\displaystyle u=\frac{x}{2}u=2x Then, du=12dx⇒2du=dx\displaystyle du=\frac{1}{2}dx\Rightarrow 2du=dxdu=21dx⇒2du=dx That is why. Upon making the subs we get 2∫sin(u)du\displaystyle 2\int sin(u)du2∫sin(u)du Now integrate and you get Soroban's result.