Integral

123

New member
Joined
Nov 6, 2010
Messages
46
π2πsinx2dx=...\displaystyle \int_{-\pi}^{2\pi}sin\frac{x}{2}dx=...
 
Answer is 2, but i miss something, when I solve it my answer is wrong.
 
Hello, 123!

-π2π ⁣ ⁣sinx2dx\displaystyle \int_{\text{-}\pi}^{2\pi}\!\!\sin\frac{x}{2}\,dx

-π2π ⁣ ⁣sinx2dx  =  -2cosx2]-π2π  =  [-2cosπ][-2cos(-π2)]  =  (-2)(-1)(-2)(0)  =  2\displaystyle \int^{2\pi}_{\text{-}\pi}\!\!\sin\frac{x}{2}\,dx \;=\;\text{-}2\cos\frac{x}{2}\bigg]^{2\pi}_{\text{-}\pi} \;=\;\bigg[\text{-}2\cos\pi\bigg] - \bigg[\text{-}2\cos\left(\text{-}\tfrac{\pi}{2}\right)\bigg] \;=\;(\text{-}2)(\text{-}1) - (\text{-}2)(0) \;=\;2

 
soroban said:
-π2π ⁣ ⁣sinx2dx  =  -2cosx2]-π2π  =\displaystyle \int^{2\pi}_{\text{-}\pi}\!\!\sin\frac{x}{2}\,dx \;=\;\text{-}2\cos\frac{x}{2}\bigg]^{2\pi}_{\text{-}\pi} \;=.....
Thanks, but why 2cos\displaystyle -2cos?
 
Make the substitution u=x2\displaystyle u=\frac{x}{2}

Then, du=12dx2du=dx\displaystyle du=\frac{1}{2}dx\Rightarrow 2du=dx

That is why.

Upon making the subs we get 2sin(u)du\displaystyle 2\int sin(u)du

Now integrate and you get Soroban's result.
 
Top