\(\displaystyle \int_{0}^{1}\frac{x^2+x+1}{(x^2+2x+2)(x+1)}\,dx\)
\(\displaystyle \int_{0}^{\pi/2}\sin(5x)\cos(3x)\mathrmb{d}x\)
soroban said:Hello, steve.b!
The first one requires a Product-to-Sum identity:
.\(\displaystyle \sin A\cos B \;=\;\frac{1}{2}\bigg[\sin(A-B) + \sin(A+B)\bigg]\)
\(\displaystyle \int_{0}^{\pi/2}\sin(5x)\cos(3x)\mathrmb{d}x\)
\(\displaystyle \text{Using the identity, the integral becomes: }\;\int^{\frac{\pi}{2}}_0 \frac{1}{2}\bigg[\sin(2x) + \sin(8x)\bigg]\,dx\;\;=\;\;\frac{1}{2}\int^{\frac{\pi}{2}}_0\bigg[\sin(2x) + \sin(8x)\bigg]\,dx\)
. . \(\displaystyle =\;\; \frac{1}{2}\bigg[-\frac{1}{2}\cos(2x) - \frac{1}{8}\cos(8x)\bigg]^{\frac{\pi}{2}}_0 \;\;=\;\;-\frac{1}{16}\bigg[4\cos(2x) + \cos(8x)\bigg]^{\frac{\pi}{2}}_0\)
. . \(\displaystyle =\;\;-\frac{1}{16}\bigg[4\cos(\pi) \;+\; \cos(4\pi)\bigg] \;+\; \frac{1}{16}\bigg[4\cos(0) \;+\; \cos(0)\bigg] \;\;=\;\;-\frac{1}{16}\bigg[4(-1)\;+\;1\bigg] + \frac{1}{16}\bigg[4(1)\;+\;1\bigg]\)
. . \(\displaystyle =\;\;\frac{3}{16} + \frac{5}{16} \;\;=\;\;\frac{1}{2}\)