∫01(x2+2x+2)(x+1)x2+x+1dx
\(\displaystyle \int_{0}^{\pi/2}\sin(5x)\cos(3x)\mathrmb{d}x\)
soroban said:Hello, steve.b!
The first one requires a Product-to-Sum identity:
.sinAcosB=21[sin(A−B)+sin(A+B)]
\(\displaystyle \int_{0}^{\pi/2}\sin(5x)\cos(3x)\mathrmb{d}x\)
Using the identity, the integral becomes: ∫02π21[sin(2x)+sin(8x)]dx=21∫02π[sin(2x)+sin(8x)]dx
. . =21[−21cos(2x)−81cos(8x)]02π=−161[4cos(2x)+cos(8x)]02π
. . =−161[4cos(π)+cos(4π)]+161[4cos(0)+cos(0)]=−161[4(−1)+1]+161[4(1)+1]
. . =163+165=21