BigGlenntheHeavy
Senior Member
- Joined
- Mar 8, 2009
- Messages
- 1,577
Evaluate: ∫1+sin(x)−cos(x)dx
Let u = 1+cos(x)sin(x) = tan(x/2) implies sin(x) = 1+u22u, cos(x) = 1+u21−u2, and dx = 1+u22du
Hence, ∫1+sin(x)−cos(x)dx = ∫1+[2u/(1+u2)]−[(1−u2)/(1+u2)]2du/(1+u2)
= ∫(1+u2)+2u−(1−u2)2du = ∫2(u+u2)2du = ∫u+u2du
= ∫[u1−1+u1]du, Partial fractions, = ln∣u∣−ln∣1+u∣+C
= ln∣∣∣∣∣1+uu∣∣∣∣∣+C=ln∣∣∣∣∣1+[sin(x)/(1+cos(x)]sin(x)/[1+cos(x)]∣∣∣∣∣+C = ln∣∣∣∣∣1+sin(x)+cos(x)sin(x)∣∣∣∣∣+C
However, after such grunt work, a check is in order (more grunt work), to wit:
Dx[ln∣∣∣∣∣1+sin(x)+cos(x)sin(x)∣∣∣∣∣+C] = sin(x)+sin2(x)+sin(x)cos(x)cos(x)+1
= sin(x)[1+cos(x)]+[1−cos2(x)]cos(x)+1 = sin(x)[1+cos(x)]+[1+cos(x)][1−cos(x)]cos(x)+1
= [1+cos(x)][sin(x)+1−cos(x)]1+cos(x) = 1+sin(x)−cos(x)1, QED
Let u = 1+cos(x)sin(x) = tan(x/2) implies sin(x) = 1+u22u, cos(x) = 1+u21−u2, and dx = 1+u22du
Hence, ∫1+sin(x)−cos(x)dx = ∫1+[2u/(1+u2)]−[(1−u2)/(1+u2)]2du/(1+u2)
= ∫(1+u2)+2u−(1−u2)2du = ∫2(u+u2)2du = ∫u+u2du
= ∫[u1−1+u1]du, Partial fractions, = ln∣u∣−ln∣1+u∣+C
= ln∣∣∣∣∣1+uu∣∣∣∣∣+C=ln∣∣∣∣∣1+[sin(x)/(1+cos(x)]sin(x)/[1+cos(x)]∣∣∣∣∣+C = ln∣∣∣∣∣1+sin(x)+cos(x)sin(x)∣∣∣∣∣+C
However, after such grunt work, a check is in order (more grunt work), to wit:
Dx[ln∣∣∣∣∣1+sin(x)+cos(x)sin(x)∣∣∣∣∣+C] = sin(x)+sin2(x)+sin(x)cos(x)cos(x)+1
= sin(x)[1+cos(x)]+[1−cos2(x)]cos(x)+1 = sin(x)[1+cos(x)]+[1+cos(x)][1−cos(x)]cos(x)+1
= [1+cos(x)][sin(x)+1−cos(x)]1+cos(x) = 1+sin(x)−cos(x)1, QED