Integral

BigGlenntheHeavy

Senior Member
Joined
Mar 8, 2009
Messages
1,577
Evaluate: dx1+sin(x)cos(x)\displaystyle Evaluate: \ \int\frac{dx}{1+sin(x)-cos(x)}

Let u = sin(x)1+cos(x) = tan(x/2) implies sin(x) = 2u1+u2, cos(x) = 1u21+u2, and dx = 2du1+u2\displaystyle Let \ u \ = \ \frac{sin(x)}{1+cos(x)} \ = \ tan(x/2) \ implies \ sin(x) \ = \ \frac{2u}{1+u^2}, \ cos(x) \ = \ \frac{1-u^2}{1+u^2}, \ and \ dx \ = \ \frac{2du}{1+u^2}

Hence, dx1+sin(x)cos(x) = 2du/(1+u2)1+[2u/(1+u2)][(1u2)/(1+u2)]\displaystyle Hence, \ \int\frac{dx}{1+sin(x)-cos(x)} \ = \ \int\frac{2du/(1+u^2)}{1+[2u/(1+u^2)]-[(1-u^2)/(1+u^2)]}

= 2du(1+u2)+2u(1u2) = 2du2(u+u2) = duu+u2\displaystyle = \ \int\frac{2du}{(1+u^2)+2u-(1-u^2)} \ = \ \int\frac{2du}{2(u+u^2)} \ = \ \int\frac{du}{u+u^2}

= [1u11+u]du, Partial fractions, = lnuln1+u+C\displaystyle = \ \int\bigg[\frac{1}{u}-\frac{1}{1+u}\bigg]du, \ Partial \ fractions, \ = \ ln|u|-ln|1+u|+C

= lnu1+u+C=lnsin(x)/[1+cos(x)]1+[sin(x)/(1+cos(x)]+C = lnsin(x)1+sin(x)+cos(x)+C\displaystyle = \ ln\bigg|\frac{u}{1+u}\bigg|+C=ln\bigg|\frac{sin(x)/[1+cos(x)]}{1+[sin(x)/(1+cos(x)]}\bigg|+C \ = \ ln\bigg|\frac{sin(x)}{1+sin(x)+cos(x)}\bigg|+C

However, after such grunt work, a check is in order (more grunt work), to wit:\displaystyle However, \ after \ such \ grunt \ work, \ a \ check \ is \ in \ order \ (more \ grunt \ work), \ to \ wit:

Dx[lnsin(x)1+sin(x)+cos(x)+C] = cos(x)+1sin(x)+sin2(x)+sin(x)cos(x)\displaystyle D_x\bigg[ln\bigg|\frac{sin(x)}{1+sin(x)+cos(x)}\bigg|+C\bigg] \ = \ \frac{cos(x)+1}{sin(x)+sin^2(x)+sin(x)cos(x)}

= cos(x)+1sin(x)[1+cos(x)]+[1cos2(x)] = cos(x)+1sin(x)[1+cos(x)]+[1+cos(x)][1cos(x)]\displaystyle = \ \frac{cos(x)+1}{sin(x)[1+cos(x)]+[1-cos^2(x)]} \ = \ \frac{cos(x)+1}{sin(x)[1+cos(x)]+[1+cos(x)][1-cos(x)]}

= 1+cos(x)[1+cos(x)][sin(x)+1cos(x)] = 11+sin(x)cos(x), QED\displaystyle = \ \frac{1+cos(x)}{[1+cos(x)][sin(x)+1-cos(x)]} \ = \ \frac{1}{1+sin(x)-cos(x)}, \ QED
 
Top