Integral, x = 0 to 0.5, of ln(1 + x^4), dx: use power series

huntsiekfind

New member
Joined
May 22, 2009
Messages
7
Need help again. Use power series to approximate the following integral to six decimal places

.5
?ln(1+x^4)dx
0
 
Re: Integral

huntsiekfind said:
Need help again. Use power series to approximate the following integral to six decimal places

.5
?ln(1+x^4)dx
0

I have scanned a copy of my work, but can't get it to send it. Is there another way?
 
Re: Integral

01/2ln(1+x4)dx = .006144515218, (Trusty TI89).\displaystyle \int_{0}^{1/2}ln(1+x^{4})dx \ = \ .006144515218, \ (Trusty \ TI-89).

Series for elementary function ln(x):\displaystyle Series \ for \ elementary \ function \ ln(x) :

ln(x) = (x1)(x1)22+(x1)33(x1)44+...+(1)n1(x1)nn+...\displaystyle ln(x) \ = \ (x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+...+\frac{(-1)^{n-1}(x-1)^{n}}{n}+...

Replacing x with (1+x4) in the series for ln(x), we have;\displaystyle Replacing \ x \ with \ (1+x^{4}) \ in \ the \ series \ for \ ln(x), \ we \ have;

01/2ln(1+x4)dx = 01/2[x4x82+x123x164+x205+...]dx\displaystyle \int_{0}^{1/2}ln(1+x^{4})dx \ = \ \int_{0}^{1/2}[x^{4}-\frac{x^{8}}{2}+\frac{x^{12}}{3}-\frac{x^{16}}{4}+\frac{x^{20}}{5}+...]dx

= x55x918+x1339x1768+x21105+...]01/2\displaystyle = \ \frac{x^{5}}{5}-\frac{x^{9}}{18}+\frac{x^{13}}{39}-\frac{x^{17}}{68}+\frac{x^{21}}{105}+...]_{0}^{1/2}

= .555.5918+.51339.51768+.521105+... = .006144515408\displaystyle = \ \frac{.5^{5}}{5}-\frac{.5^{9}}{18}+\frac{.5^{13}}{39}-\frac{.5^{17}}{68}+\frac{.5^{21}}{105}+... \ = \ .006144515408
 
Top