I think all of my work is correct thus far. It is at the end that I am having difficulty when substituing back in for x
.
\(\displaystyle \int \frac{x^2dx}{\sqrt{9-x^2}}\)
\(\displaystyle a^2 - x^2 = 3^2 - x^2\)
\(\displaystyle x = 3sin(b)\)
\(\displaystyle dx = 3cos(b)db\)
\(\displaystyle a^2 - x^2 = 9 - sin^2(b)\)
\(\displaystyle = 9(1 - sin^2(b)\)
\(\displaystyle = 9cos^2(b)\)
\(\displaystyle a^2 - x^2 = 9cos^2(b)\)
\(\displaystyle \sqrt{9 - x^2} = 3cos(b)\)
==>\(\displaystyle \int \frac{(9sin^2(b)(3cos(b)db)}{3cos(b)} = 9\int sin^2(b)db\)
I know that \(\displaystyle \int sin^2(b)db = \frac{b}{2} - \frac{sin(2b)}{4} + C\)
I need help substituing back in, in terms of x.
Thanks!
.
\(\displaystyle \int \frac{x^2dx}{\sqrt{9-x^2}}\)
\(\displaystyle a^2 - x^2 = 3^2 - x^2\)
\(\displaystyle x = 3sin(b)\)
\(\displaystyle dx = 3cos(b)db\)
\(\displaystyle a^2 - x^2 = 9 - sin^2(b)\)
\(\displaystyle = 9(1 - sin^2(b)\)
\(\displaystyle = 9cos^2(b)\)
\(\displaystyle a^2 - x^2 = 9cos^2(b)\)
\(\displaystyle \sqrt{9 - x^2} = 3cos(b)\)
==>\(\displaystyle \int \frac{(9sin^2(b)(3cos(b)db)}{3cos(b)} = 9\int sin^2(b)db\)
I know that \(\displaystyle \int sin^2(b)db = \frac{b}{2} - \frac{sin(2b)}{4} + C\)
I need help substituing back in, in terms of x.
Thanks!