Hello, uberathlete!
Integrate: \(\displaystyle \L\,\int\frac{2}{x^2\,+\,4}\,dx\)
I know the answer is: \(\displaystyle \,\arcsin\left(\frac{x}{2}\right)\,+\,C\;\) . . . of course, you mean arctangent
Trig Substitution is the way to go . . .
Let: \(\displaystyle x\,=\,2\cdot\tan\theta\;\;\Rightarrow\;\;dx\,=\,2\cdot\sec^2\theta\,d\theta\)
And: \(\displaystyle \,x^2\,+\,4\:=\
2\tan\theta)^2\,+\,4\:=\:4\tan^2\theta\,+\,4\:=\:4(\tan^2\theta\,+\,1)\:=\:4\cdot\sec^2\theta\)
Substitute: \(\displaystyle \L\:\int\frac{2}{4\cdot\sec^2\theta}\)\(\displaystyle \cdot(2\cdot\sec^2\theta\,d\theta)\;=\;\L\int d\theta \;= \;\theta\,+\,C\)
Back-substitute:\(\displaystyle \;x = 2\cdot\tan\theta\;\;\Rightarrow\;\;\tan\theta\,=\,\frac{x}{2}\;\;\Rightarrow\;\;\theta\,=\,\arctan\left(\frac{x}{2}\right)\)
\(\displaystyle \text{Answer: }\:\L\arctan\left(\frac{x}{2}\right)\,+\,C\)