\(\displaystyle \int\frac{x}{x^{2}+a^{2}}dx, \ I'm \ assuming \ that \ a \ is \ a \ constant.\)
\(\displaystyle Then \ let \ u \ = \ x^{2}+a^{2}, \ \implies \ \frac{du}{2} \ = \ xdx, \ hence -\)
\(\displaystyle \frac{1}{2}\int\frac{du}{u} \ = \ \frac{ln|u|}{2}+C \ = \ \frac{ln(x^{2}+a^{2})}{2}+C\)
\(\displaystyle Check: \ D_x\bigg[\frac{ln(x^{2}+a^{2})}{2}+C\bigg] \ = \ \frac{1}{2}\bigg[\frac{2x}{x^{2}+a^{2}}\bigg] \ = \ \frac{x}{x^{2}+a^{2}}\)