Integral of (x + 9lnx) as a limit of Riemann sums

CalcEqualsUgh

New member
Joined
Dec 2, 2007
Messages
11
Express the integral as a limit of Riemann sums. Do not evaluate the limit.

11 on top of integral sign
1 on bottom of integral sign (x + 9lnx)dx


Please use only n and i as indices of limit and Riemann sums.

Really lost about the whole Riemann sums thing.
 
Re: Integral as a limit of Riemann sums

Δx=111n=10n\displaystyle {\Delta}x=\frac{11-1}{n}=\frac{10}{n}

Using the right endpoint method, a+iΔx\displaystyle a+i{\Delta}x:

xk=1+10in\displaystyle x_{k}=1+\frac{10i}{n}

   f(xk)Δ=[(1+10in)+9ln(1+10in)]10n\displaystyle {\therefore} \;\ f(x_{k}){\Delta}= \left[\left(1+\frac{10i}{n}\right)+9ln\left(1+\frac{10i}{n}\right)\right]\cdot\frac{10}{n}

Remember, that i=1ni=n(n+1)2\displaystyle \sum_{i=1}^{n}i=\frac{n(n+1)}{2}
 
Top