Here's my attempt:
i know cos^2 x = cos2x + 1/2 (from double angle cos formula)
integral of (1 - cos^2 x) * cos^2 (x) dx = integral of cos^2 (x) - cos^4 (x)
integral of (cos2x / 2 + 1/2 ) - (cos(2x)/2 + 1/2)(cos(2x) / 2 + 1/2)
= integral of cos(2x) / 2 + 1/2 - cos^2 (2x) / 4 - cos(2x)/4 - cos(2x)/4 - 1/4
integral of -cos^2 (2x) / 4 + integral of 1/4
I'm stuck now.
Thanks.
i know cos^2 x = cos2x + 1/2 (from double angle cos formula)
integral of (1 - cos^2 x) * cos^2 (x) dx = integral of cos^2 (x) - cos^4 (x)
integral of (cos2x / 2 + 1/2 ) - (cos(2x)/2 + 1/2)(cos(2x) / 2 + 1/2)
= integral of cos(2x) / 2 + 1/2 - cos^2 (2x) / 4 - cos(2x)/4 - cos(2x)/4 - 1/4
integral of -cos^2 (2x) / 4 + integral of 1/4
I'm stuck now.
Thanks.