Let's look at what is said by your book to be an identity:
\(\displaystyle \displaystyle \int \sec^3(x)\,dx=\frac{1}{2}\sec^2(x)\sin(x)-\frac{1}{2}\int \sec(x)\,dx\)
If we differentiate with respect to \(\displaystyle x\), we obtain:
\(\displaystyle \displaystyle \sec^3(x)=\frac{1}{2}\left(\sec^2(x)\cos(x)+ 2\tan(x)\sec^2(x)\sin(x)\right)-\frac{1}{2}\sec(x)\)
\(\displaystyle \displaystyle \sec^3(x)=\sin^2(x)\sec(x)\)
This isn't an identity...but let's try:
\(\displaystyle \displaystyle \int \sec^3(x)\,dx=\frac{1}{2}\sec^2(x)\sin(x)+\frac{1}{2}\int \sec(x)\,dx\)
\(\displaystyle \displaystyle \sec^3(x)=\frac{\sec(x)}{2}\left(\tan^2(x)+\sec^2(x)+1\right)\)
\(\displaystyle \displaystyle 2\sec^2(x)=\tan^2(x)+\sec^2(x)+1\)
\(\displaystyle \displaystyle \sec^2(x)=\tan^2(x)+1\quad\checkmark\)
This is a Pythagorean identity.