integral of 1/(2sinx + sin2x)

jhp88

New member
Joined
Oct 14, 2006
Messages
2
i've been stuck on this problem for a while
find the integral of 1/(2sinx + sin2x) dx

so far i have int. 1/(2sinx + 2sinxcosx) dx

and then int. 1/(2sinx(1+cosx)) dx

but i'm missing the substitution needed after that

any help would be appreciated!
 
There are some rather wacky substitutions you can use. I beleiev they're called the Weierstrauss substitutions.

Rewrite your integral using identities:

\(\displaystyle \L\\\frac{1}{2}\int\frac{1}{sin(x)+sin(x)cos(x)}dx\)

Use the substitutions:

\(\displaystyle \L\\sin(x)=\frac{2u}{1+u^{2}}\\cos(x)=\frac{1-u^{2}}{1+u^{2}}\\dx=\frac{2}{1+u^{2}}\\u=tan(\frac{x}{2})\)

\(\displaystyle \L\\\frac{1}{2}\int\frac{1}{\frac{2u}{1+u^{2}}+\frac{2u}{1+u^{2}}\cdot\frac{1-u^{2}}{1+u^{2}}}\cdot\frac{2}{1+u^{2}}du\)

This monster whittles down to:

\(\displaystyle \L\\\frac{1}{2}\int\frac{u^{2}+1}{2u}du\)

Integrating gives:

\(\displaystyle \L\\\frac{2ln(u)+u^{2}}{8}+C\)

Don't forget to sub in \(\displaystyle u=tan(\frac{x}{2})\)

\(\displaystyle \H\\\frac{2ln(tan(\frac{x}{2}))+tan^{2}(\frac{x}{2})}{8}+C\)
 
Hello, jhp88!

Another approach . . .


\(\displaystyle \L\int\frac{dx}{2\sin x\,+\,\sin2x}\)

So far I have: \(\displaystyle \L\:\int \frac{dx}{2\sin x\,+\,2\sin x\cos x} \;=\;\frac{1}{2}\int\frac{dx}{\sin x(1\,+\,\cos x)}\;\) . . . a good start!

Multiply top and bottom by \(\displaystyle (1\,-\,\cos x):\)

\(\displaystyle \L\frac{1}{\sin x(1\,+\,\cos x)}\cdot\frac{1\,-\,\cos x}{1\,-\,\cos x} \:=\:\frac{1\,-\,\cos x}{\sin x(1\,-\,\cos^2x)} \:=\:\frac{1\,-\,\cos x}{\sin x\cdot\sin^2x} \:=\:\frac{1\,-\,\cos x}{\sin^3x}\)

. . \(\displaystyle \L=\;\frac{1}{\sin^3x}\,-\,\frac{\cos x}{\sin^3x} \:=\:\csc^3x\,-\,\csc^2x\cot x\)

The integral becomes: \(\displaystyle \:\frac{1}{2}\bigg[\L\int\)\(\displaystyle \csc^3x\,dx \,+\,\L\int\)\(\displaystyle \cot x(-\csc^2x\,dx)\bigg]\)


The first integral is done by parts:\(\displaystyle \L\:\int\)\(\displaystyle \csc^3x\,dx\;=\;\frac{1}{2}\bigg(-\csc x\cot x\,+\,\ln|\csc x\,-\,\cot x|\bigg)\)

In the second integral: let \(\displaystyle u\,=\,\cot x\;\;\Rightarrow\;\;du \,=\,-\csc^2x\,dx\)
. . Substitute: \(\displaystyle \L\:\int\)\(\displaystyle u\,du \;=\;\frac{1}{u^2}\;=\;\frac{1}{2}\cot^2x\)


And we have: \(\displaystyle \:\frac{1}{4}\bigg(\cot^2x\,-\,\csc x\cot x\,+\,\ln|\csc x\,-\,\cot x|\bigg)\,+\,C\)

 
Top