So far I have: \(\displaystyle \L\:\int \frac{dx}{2\sin x\,+\,2\sin x\cos x} \;=\;\frac{1}{2}\int\frac{dx}{\sin x(1\,+\,\cos x)}\;\) . . . a good start!
The integral becomes: \(\displaystyle \:\frac{1}{2}\bigg[\L\int\)\(\displaystyle \csc^3x\,dx \,+\,\L\int\)\(\displaystyle \cot x(-\csc^2x\,dx)\bigg]\)
The first integral is done by parts:\(\displaystyle \L\:\int\)\(\displaystyle \csc^3x\,dx\;=\;\frac{1}{2}\bigg(-\csc x\cot x\,+\,\ln|\csc x\,-\,\cot x|\bigg)\)
In the second integral: let \(\displaystyle u\,=\,\cot x\;\;\Rightarrow\;\;du \,=\,-\csc^2x\,dx\) . . Substitute: \(\displaystyle \L\:\int\)\(\displaystyle u\,du \;=\;\frac{1}{u^2}\;=\;\frac{1}{2}\cot^2x\)
And we have: \(\displaystyle \:\frac{1}{4}\bigg(\cot^2x\,-\,\csc x\cot x\,+\,\ln|\csc x\,-\,\cot x|\bigg)\,+\,C\)
This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
By continuing to use this site, you are consenting to our use of cookies.