can u help me with one of these ??? please i need it fot tomorrow
M mathe25 Junior Member Joined Oct 13, 2011 Messages 50 Feb 21, 2013 #1 can u help me with one of these ??? please i need it fot tomorrow
D Deleted member 4993 Guest Feb 21, 2013 #2 mathe25 said: View attachment 2620 can u help me with one of these ??? please i need it fot tomorrow Click to expand... Hint: cos2x = [1+ cos(2x)]/2
mathe25 said: View attachment 2620 can u help me with one of these ??? please i need it fot tomorrow Click to expand... Hint: cos2x = [1+ cos(2x)]/2
D Deleted member 4993 Guest Feb 21, 2013 #4 mathe25 said: sin ^2 x -??? Click to expand... Hint above should guide you.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Feb 21, 2013 #5 Hello, mathe25! Here's the first one . . . \(\displaystyle \displaystyle I \;=\;\int e^x\cos^2\!x\,dx\) Click to expand... \(\displaystyle \text{Trig identity: }\:\cos^2\!\theta \:=\:\dfrac{1 + \cos2\theta}{2}\) \(\displaystyle \displaystyle\text{So we have: }\:I \;=\;\int e^x\left(\frac{1+\cos2x}{2}\right)dx \;=\;\tfrac{1}{2}\int e^x\,dx + \tfrac{1}{2}\int e^x\cos2x\,dx \) . . . . . . . . . .\(\displaystyle \displaystyle I \;=\;\tfrac{1}{2}e^x + \tfrac{1}{2}\int e^x\cos2x\,dx\;\;\color{red}{[1]}\) \(\displaystyle \displaystyle\text{Let }\,J \:=\:\int e^x\cos2x\,dx\) \(\displaystyle \text{By parts: }\:\begin{Bmatrix} u &=& \cos2x && dv &=& e^xdx \\ du &=& \text{-}2\sin2x\,dx && v &=& e^x \end{Bmatrix}\) \(\displaystyle \displaystyle J \;=\;e^x\cos2x + 2\int e^x\sin2x\,dx\) \(\displaystyle \text{By parts: }\:\begin{Bmatrix}u &=& \sin2x && dv &=& e^xdx \\ du &=& 2\cos2x\,dx && v &=& e^x \end{Bmatrix}\) \(\displaystyle \displaystyle J \;=\;e^x\cos2x + 2\left(e^x\sin2x - 2\int e^x\cos2x\,dx\right) \) \(\displaystyle \displaystyle J \;=\;e^x\cos2x + 2e^x\sin2x -4\underbrace{\int e^x\cos2x\,dx}_{\text{This is }J}\) \(\displaystyle J \;=\;e^x\cos2x + 2e^x\sin2x - 4J +C \) \(\displaystyle 5J \;=\;e^x\cos2x + 2e^x\sin2x +C\) \(\displaystyle J \;=\;\frac{1}{5}e^x\cos2x + \frac{2}{5} e^x\sin2x + C\) \(\displaystyle \text{Substitute into }\color{red}{[1]}:\;I \;=\;\frac{1}{2}e^x + \frac{1}{2}\left(\frac{1}{5}e^x\cos2x + \frac{2}{5}e^x\sin2x\right) + C\) . . . . . . . . . . . . . . . \(\displaystyle I \;=\;\frac{1}{2}e^x + \frac{1}{10}e^x\cos2x + \frac{1}{5}e^x\sin2x + C\) . . . . . . . . . . . . . . . \(\displaystyle I \;=\;\frac{1}{10}e^x(5 + \cos2x + 2\sin2x) + C\)
Hello, mathe25! Here's the first one . . . \(\displaystyle \displaystyle I \;=\;\int e^x\cos^2\!x\,dx\) Click to expand... \(\displaystyle \text{Trig identity: }\:\cos^2\!\theta \:=\:\dfrac{1 + \cos2\theta}{2}\) \(\displaystyle \displaystyle\text{So we have: }\:I \;=\;\int e^x\left(\frac{1+\cos2x}{2}\right)dx \;=\;\tfrac{1}{2}\int e^x\,dx + \tfrac{1}{2}\int e^x\cos2x\,dx \) . . . . . . . . . .\(\displaystyle \displaystyle I \;=\;\tfrac{1}{2}e^x + \tfrac{1}{2}\int e^x\cos2x\,dx\;\;\color{red}{[1]}\) \(\displaystyle \displaystyle\text{Let }\,J \:=\:\int e^x\cos2x\,dx\) \(\displaystyle \text{By parts: }\:\begin{Bmatrix} u &=& \cos2x && dv &=& e^xdx \\ du &=& \text{-}2\sin2x\,dx && v &=& e^x \end{Bmatrix}\) \(\displaystyle \displaystyle J \;=\;e^x\cos2x + 2\int e^x\sin2x\,dx\) \(\displaystyle \text{By parts: }\:\begin{Bmatrix}u &=& \sin2x && dv &=& e^xdx \\ du &=& 2\cos2x\,dx && v &=& e^x \end{Bmatrix}\) \(\displaystyle \displaystyle J \;=\;e^x\cos2x + 2\left(e^x\sin2x - 2\int e^x\cos2x\,dx\right) \) \(\displaystyle \displaystyle J \;=\;e^x\cos2x + 2e^x\sin2x -4\underbrace{\int e^x\cos2x\,dx}_{\text{This is }J}\) \(\displaystyle J \;=\;e^x\cos2x + 2e^x\sin2x - 4J +C \) \(\displaystyle 5J \;=\;e^x\cos2x + 2e^x\sin2x +C\) \(\displaystyle J \;=\;\frac{1}{5}e^x\cos2x + \frac{2}{5} e^x\sin2x + C\) \(\displaystyle \text{Substitute into }\color{red}{[1]}:\;I \;=\;\frac{1}{2}e^x + \frac{1}{2}\left(\frac{1}{5}e^x\cos2x + \frac{2}{5}e^x\sin2x\right) + C\) . . . . . . . . . . . . . . . \(\displaystyle I \;=\;\frac{1}{2}e^x + \frac{1}{10}e^x\cos2x + \frac{1}{5}e^x\sin2x + C\) . . . . . . . . . . . . . . . \(\displaystyle I \;=\;\frac{1}{10}e^x(5 + \cos2x + 2\sin2x) + C\)
D Deleted member 4993 Guest Feb 21, 2013 #6 \(\displaystyle I \ = \ \int e^x sin^2(x) dx \ = \ \int e^x [1- cos^2(x)] dx \ \)