integral math

Hello, mathe25!

Here's the first one . . .


\(\displaystyle \displaystyle I \;=\;\int e^x\cos^2\!x\,dx\)

\(\displaystyle \text{Trig identity: }\:\cos^2\!\theta \:=\:\dfrac{1 + \cos2\theta}{2}\)

\(\displaystyle \displaystyle\text{So we have: }\:I \;=\;\int e^x\left(\frac{1+\cos2x}{2}\right)dx \;=\;\tfrac{1}{2}\int e^x\,dx + \tfrac{1}{2}\int e^x\cos2x\,dx \)

. . . . . . . . . .\(\displaystyle \displaystyle I \;=\;\tfrac{1}{2}e^x + \tfrac{1}{2}\int e^x\cos2x\,dx\;\;\color{red}{[1]}\)

\(\displaystyle \displaystyle\text{Let }\,J \:=\:\int e^x\cos2x\,dx\)

\(\displaystyle \text{By parts: }\:\begin{Bmatrix} u &=& \cos2x && dv &=& e^xdx \\ du &=& \text{-}2\sin2x\,dx && v &=& e^x \end{Bmatrix}\)

\(\displaystyle \displaystyle J \;=\;e^x\cos2x + 2\int e^x\sin2x\,dx\)

\(\displaystyle \text{By parts: }\:\begin{Bmatrix}u &=& \sin2x && dv &=& e^xdx \\ du &=& 2\cos2x\,dx && v &=& e^x \end{Bmatrix}\)

\(\displaystyle \displaystyle J \;=\;e^x\cos2x + 2\left(e^x\sin2x - 2\int e^x\cos2x\,dx\right) \)

\(\displaystyle \displaystyle J \;=\;e^x\cos2x + 2e^x\sin2x -4\underbrace{\int e^x\cos2x\,dx}_{\text{This is }J}\)

\(\displaystyle J \;=\;e^x\cos2x + 2e^x\sin2x - 4J +C \)

\(\displaystyle 5J \;=\;e^x\cos2x + 2e^x\sin2x +C\)

\(\displaystyle J \;=\;\frac{1}{5}e^x\cos2x + \frac{2}{5} e^x\sin2x + C\)


\(\displaystyle \text{Substitute into }\color{red}{[1]}:\;I \;=\;\frac{1}{2}e^x + \frac{1}{2}\left(\frac{1}{5}e^x\cos2x + \frac{2}{5}e^x\sin2x\right) + C\)

. . . . . . . . . . . . . . . \(\displaystyle I \;=\;\frac{1}{2}e^x + \frac{1}{10}e^x\cos2x + \frac{1}{5}e^x\sin2x + C\)

. . . . . . . . . . . . . . . \(\displaystyle I \;=\;\frac{1}{10}e^x(5 + \cos2x + 2\sin2x) + C\)
 
\(\displaystyle I \ = \ \int e^x sin^2(x) dx \ = \ \int e^x [1- cos^2(x)] dx \ \)
 
Top