\int_{1}^0\frac{x-\alpha}{(x+1)(3x+1)}dx=0 Find the value of the constant \alpha :P
G Guest Guest Jun 21, 2006 #1 \(\displaystyle \int_{1}^0\frac{x-\alpha}{(x+1)(3x+1)}dx=0\) Find the value of the constant \(\displaystyle \alpha\)
\(\displaystyle \int_{1}^0\frac{x-\alpha}{(x+1)(3x+1)}dx=0\) Find the value of the constant \(\displaystyle \alpha\)
pka Elite Member Joined Jan 29, 2005 Messages 11,976 Jun 21, 2006 #2 Use partial fractions: \(\displaystyle \L \int\limits_1^0 {\frac{{x - a}}{{\left( {x + 3} \right)\left( {3x + 1} \right)}}dx} = \int\limits_1^0 {\left[ {\frac{{a + 3}}{{8\left( {x + 3} \right)}} - \frac{{1 + 3a}}{{8\left( {3x + 1} \right)}}} \right]} dx = 0\)
Use partial fractions: \(\displaystyle \L \int\limits_1^0 {\frac{{x - a}}{{\left( {x + 3} \right)\left( {3x + 1} \right)}}dx} = \int\limits_1^0 {\left[ {\frac{{a + 3}}{{8\left( {x + 3} \right)}} - \frac{{1 + 3a}}{{8\left( {3x + 1} \right)}}} \right]} dx = 0\)
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,216 Jun 21, 2006 #3 \(\displaystyle \L\\\int\frac{x-a}{(x+1)(3x+1)}dx\) Using partial fractions: \(\displaystyle \L\\\frac{A}{x+1}+\frac{B}{3x+1}=x-a\) We eventually find that \(\displaystyle \L\\A=\frac{a+1}{2}\) and \(\displaystyle B=\frac{-3a}{2}-\frac{1}{2}\) \(\displaystyle \L\\(\frac{a+1}{2})\int_{1}^{0}\frac{1}{x+1}+\frac{1}{2}(-1-3a)\int_{1}^{0}\frac{1}{3x+1}dx\) Now integrate, set to 0 and solve for a.
\(\displaystyle \L\\\int\frac{x-a}{(x+1)(3x+1)}dx\) Using partial fractions: \(\displaystyle \L\\\frac{A}{x+1}+\frac{B}{3x+1}=x-a\) We eventually find that \(\displaystyle \L\\A=\frac{a+1}{2}\) and \(\displaystyle B=\frac{-3a}{2}-\frac{1}{2}\) \(\displaystyle \L\\(\frac{a+1}{2})\int_{1}^{0}\frac{1}{x+1}+\frac{1}{2}(-1-3a)\int_{1}^{0}\frac{1}{3x+1}dx\) Now integrate, set to 0 and solve for a.