\(\displaystyle Given: \ f(t) \ = \ \frac{9}{4+t}, \ \Delta t \ = \ 0.2 \ = \ \frac{1}{5}, \ 0 \ \le \ t \ \le \ 1\)
\(\displaystyle Right \ Endpoint: \ \frac{1}{5}\sum_{i=1}^{5}\frac{45}{20+i} \ = \ 1.96396668549\)
\(\displaystyle Left \ Endpoint: \ \frac{1}{5}\sum_{i=1}^{5}\frac{45}{19+i} \ = \ 2.05396668549\)
\(\displaystyle Avg: \ \frac{[1.96396668549+2.05396668549]}{2} \ = \ 2.00896668549\)
\(\displaystyle Under \ estimate \ (Right \ Endpoint) \ = \ 1.96396668549\)
\(\displaystyle Over \ estimate \ (Left \ Endpoint) \ = \ 2.05396668549\)
\(\displaystyle Avg. \ of \ two \ = \ 2.00896668549\)
\(\displaystyle Actual \ (true) \ value: \ \int_{0}^{1}\frac{9}{4+t}dt \ = \ 9ln(5/4) \ = \ 2.00829196183\)
Here is the under estimation, right endpoint of f(t) = 9/(4+t).
[attachment=1:1vzk9lg0]bbb.jpg[/attachment:1vzk9lg0]
Here is the over estimation, left endpoint of f(t) = 9/(4+t).
[attachment=0:1vzk9lg0]ccc.jpg[/attachment:1vzk9lg0]