Hello, Messagehelp!
You already made an error . . .
\(\displaystyle \L\int\frac{\cos(x)}{1\,+\,\sin^2(x)}\,dx\)
Let \(\displaystyle u\,=\,\sin(x)\;\;\Rightarrow\;\;du\,=\,\cos(x)\,dx\;\;\Rightarrow\;\;dx \,=\,\frac{du}{\cos(x)}\)
Substitute: \(\displaystyle \L\:\int\frac{\cos(x)}{1\,+\,u^2}\left(\frac{du}{\cos(x)}\right) \;=\;\int\frac{du}{1\,+\,u^2}\)
And you don't recognize this form??
Formula \(\displaystyle \L\;\int\frac{du}{1\,+\,u^2}\)\(\displaystyle \;=\;\tan^{^{-1}}(u)\,+\,C\)