A function f is defined by:
f ( x ) = [int] from 0 -> pi cos t * cos ( x - t) dt 0 <_ x <_ 2pi
Find the minimum value of f
I first use the trig identity cosAcosB = 1/2 [ cos( A+B) +cos(A-B)]
So the integrand simplies into this:
1/2 [int] 0--> pi [ cos x + cos(2t - x)] dt
I am stuck on how to solve for this integral because of the two variables.
f ( x ) = [int] from 0 -> pi cos t * cos ( x - t) dt 0 <_ x <_ 2pi
Find the minimum value of f
I first use the trig identity cosAcosB = 1/2 [ cos( A+B) +cos(A-B)]
So the integrand simplies into this:
1/2 [int] 0--> pi [ cos x + cos(2t - x)] dt
I am stuck on how to solve for this integral because of the two variables.