Hello, dagr8est!
Here's another approach . . .
\(\displaystyle \L \int \left(1\,+\,x^{-\frac{2}{3}}\right)^{\frac{1}{2}}\,dx\)
Under the radical we have: \(\displaystyle \,1\,+\,x^{-\frac{2}{3}} \;= \;1\,+\,\frac{1}{x^{\frac{2}{3}}} \;=\;\frac{x^{\frac{2}{3}}\,+\,1}{x^{\frac{2}{3}}}\)
Then we have: \(\displaystyle \L\,\sqrt{\frac{x^{\frac{2}{3}}\,+\,1}{x^{\frac{2}{3}}}} \;= \;\frac{\sqrt{x^{\frac{2}{3}}\,+\,1}}{x^{\frac{1}{3}}}\)
The integral becomes: \(\displaystyle \L\,\int\)\(\displaystyle x^{-\frac{1}{3}}\left(x^{\frac{2}{3}}\,+\,1\right)^{1/2}\,dx\)
\(\displaystyle \text{Now let }u\,=\,x^{\frac{2}{3}}\,+\,1\)