D dagr8est Junior Member Joined Nov 2, 2004 Messages 128 Oct 11, 2006 #1 Hi, I need some help with this problem. integral 1/(1-cscx) dx I've tried multiplying by several forms of 1 involving cotx and/or cscx but I haven't made any progress.
Hi, I need some help with this problem. integral 1/(1-cscx) dx I've tried multiplying by several forms of 1 involving cotx and/or cscx but I haven't made any progress.
skeeter Elite Member Joined Dec 15, 2005 Messages 3,204 Oct 11, 2006 #2 1/(1-cscx) = sinx/(sinx - 1) sinx/(sinx - 1)*(sinx + 1)/(sinx + 1) = sinx(sinx + 1)/(sin<sup>2</sup>x - 1) = -sinx(sinx + 1)/cos<sup>2</sup>x = (-sin<sup>2</sup>x - sinx)/cos<sup>2</sup>x = -sin<sup>2</sup>x/cos<sup>2</sup>x - sinx/cos<sup>2</sup>x = -tan<sup>2</sup>x - secx*tanx = 1 - sec<sup>2</sup>x - secx*tanx antiderivative is ... x - tanx - secx + C
1/(1-cscx) = sinx/(sinx - 1) sinx/(sinx - 1)*(sinx + 1)/(sinx + 1) = sinx(sinx + 1)/(sin<sup>2</sup>x - 1) = -sinx(sinx + 1)/cos<sup>2</sup>x = (-sin<sup>2</sup>x - sinx)/cos<sup>2</sup>x = -sin<sup>2</sup>x/cos<sup>2</sup>x - sinx/cos<sup>2</sup>x = -tan<sup>2</sup>x - secx*tanx = 1 - sec<sup>2</sup>x - secx*tanx antiderivative is ... x - tanx - secx + C
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Oct 11, 2006 #3 Hello, dagr8est! Almost the same as skeeter's solution . . . \(\displaystyle \L\int \frac{dx}{1\,-\,csc x}\) Click to expand... Multiply top and bottom by \(\displaystyle (1\,+\,\csc x):\) . . \(\displaystyle \L\frac{1}{1\,-\,\csc x}\,\cdot\,\frac{1\,+\,\csc x}{1\,+\,\csc x} \;=\;\frac{1\,+\,\csc x}{1\,-\,\csc^2x} \;=\;\frac{1\,+\,\csc x}{-\cot^2x}\) . . \(\displaystyle \L=\;-\frac{1}{\cot^2x}\,-\,\frac{\csc x}{\cot^2x}\;= \;-\tan^2x\,-\,\sec x\tan x \;=\;-(\sec^2x\,-\,1)\,-\,\sec x\tan x\) The integral becomes: \(\displaystyle \L\:\int\left(1\,-\,\sec^2x\,-\,\sec x\tan x)\,dx\) . . and we have: \(\displaystyle \L\:x\,-\,\tan x\,-\,\sec x\,+\,C\)
Hello, dagr8est! Almost the same as skeeter's solution . . . \(\displaystyle \L\int \frac{dx}{1\,-\,csc x}\) Click to expand... Multiply top and bottom by \(\displaystyle (1\,+\,\csc x):\) . . \(\displaystyle \L\frac{1}{1\,-\,\csc x}\,\cdot\,\frac{1\,+\,\csc x}{1\,+\,\csc x} \;=\;\frac{1\,+\,\csc x}{1\,-\,\csc^2x} \;=\;\frac{1\,+\,\csc x}{-\cot^2x}\) . . \(\displaystyle \L=\;-\frac{1}{\cot^2x}\,-\,\frac{\csc x}{\cot^2x}\;= \;-\tan^2x\,-\,\sec x\tan x \;=\;-(\sec^2x\,-\,1)\,-\,\sec x\tan x\) The integral becomes: \(\displaystyle \L\:\int\left(1\,-\,\sec^2x\,-\,\sec x\tan x)\,dx\) . . and we have: \(\displaystyle \L\:x\,-\,\tan x\,-\,\sec x\,+\,C\)