integral 1/(1-cscx) dx

dagr8est

Junior Member
Joined
Nov 2, 2004
Messages
128
Hi, I need some help with this problem.

integral 1/(1-cscx) dx

I've tried multiplying by several forms of 1 involving cotx and/or cscx but I haven't made any progress.
 
1/(1-cscx) = sinx/(sinx - 1)

sinx/(sinx - 1)*(sinx + 1)/(sinx + 1) =
sinx(sinx + 1)/(sin<sup>2</sup>x - 1) =
-sinx(sinx + 1)/cos<sup>2</sup>x =
(-sin<sup>2</sup>x - sinx)/cos<sup>2</sup>x =
-sin<sup>2</sup>x/cos<sup>2</sup>x - sinx/cos<sup>2</sup>x =
-tan<sup>2</sup>x - secx*tanx =
1 - sec<sup>2</sup>x - secx*tanx

antiderivative is ...
x - tanx - secx + C
 
Hello, dagr8est!

Almost the same as skeeter's solution . . .


\(\displaystyle \L\int \frac{dx}{1\,-\,csc x}\)

Multiply top and bottom by \(\displaystyle (1\,+\,\csc x):\)

. . \(\displaystyle \L\frac{1}{1\,-\,\csc x}\,\cdot\,\frac{1\,+\,\csc x}{1\,+\,\csc x} \;=\;\frac{1\,+\,\csc x}{1\,-\,\csc^2x} \;=\;\frac{1\,+\,\csc x}{-\cot^2x}\)

. . \(\displaystyle \L=\;-\frac{1}{\cot^2x}\,-\,\frac{\csc x}{\cot^2x}\;= \;-\tan^2x\,-\,\sec x\tan x \;=\;-(\sec^2x\,-\,1)\,-\,\sec x\tan x\)


The integral becomes: \(\displaystyle \L\:\int\left(1\,-\,\sec^2x\,-\,\sec x\tan x)\,dx\)

. . and we have: \(\displaystyle \L\:x\,-\,\tan x\,-\,\sec x\,+\,C\)

 
Top