Determine whether the series converges, and if so find its sum
\(\displaystyle \L\;\;\;\sum^{\infty}_{k=1}\left(\frac{2}{3}\right)^{k+2}\)
I used the geometric series formula: \(\displaystyle \L\,\sum^{\infty}_{k=0}ar^k\;=\;\frac{a}{1\,-\,r}\;\) . . . yes!
I chose: \(\displaystyle \,\underbrace{a\, =\, 1},\;\; r\, =\,\frac{2}{3}\;\)
. . . . . . . . no