This may be little belated but here's a method:
You have \(\displaystyle \sum_{n=1}^{\infty}\(4n+1)x^{2n}\), x<1
=\(\displaystyle 4\sum_{n=1}^{\infty}nx^{2n}+\sum_{n=1}^{\infty}x^{2n}\)
It can be shown that:
\(\displaystyle \sum_{n=1}^{\infty}nx^{2n}=\sum_{n=0}^{\infty}x^{2n}\sum_{n=1}^{\infty}x^{2n}\)
\(\displaystyle \sum_{n=0}^{\infty}x^{2n}=\frac{1}{1-x^{2}}=\frac{1}{1-(.85634884)^{2}}=3.75=\frac{15}{4}\)
Therefore, \(\displaystyle \sum_{n=1}^{\infty}x^{2n}=2.75=\frac{11}{4}\)
\(\displaystyle (4)(3.75)(2.75)=(4)(\frac{15}{4})(\frac{11}{4})=41.25\)
So we have: \(\displaystyle 41.25+2.75=44\)