Infinite Series

sickplaya

New member
Joined
Jan 12, 2006
Messages
22
What is the sum of the following infinite series:

5x^2 + 9x^4 + 13x^6 + 17x^8 +.....
(x=0.85634884)

Round the answer to the nearest whole number.




Please show me all the steps; thanks.
 
sickplaya said:
5x^2 + 9x^4 + 13x^6 + 17x^8 +.....
Just add it all up.

5x^2 + 9x^4 + 13x^6 + 17x^8 +..... = S
5x^4 + 9x^6 + 13x^8 + 17x^10 +..... = S*x^2

Subtracting

5x^2 + 4x^4 + 4x^6 + 4x^8 +..... = S*(1-x^2)

Judicious Factoring

5x^2 + (4x^4)*(1 + x^2 + x^4 +.....) = S*(1-x^2)

Can you add up the one in the parentheses and solve for S?

It's not pretty, but it works.
 
Hint: answer is a 2digit number with both digits the same :shock:
 
This may be little belated but here's a method:

You have \(\displaystyle \sum_{n=1}^{\infty}\(4n+1)x^{2n}\), x<1

=4n=1nx2n+n=1x2n\displaystyle 4\sum_{n=1}^{\infty}nx^{2n}+\sum_{n=1}^{\infty}x^{2n}

It can be shown that:

n=1nx2n=n=0x2nn=1x2n\displaystyle \sum_{n=1}^{\infty}nx^{2n}=\sum_{n=0}^{\infty}x^{2n}\sum_{n=1}^{\infty}x^{2n}

n=0x2n=11x2=11(.85634884)2=3.75=154\displaystyle \sum_{n=0}^{\infty}x^{2n}=\frac{1}{1-x^{2}}=\frac{1}{1-(.85634884)^{2}}=3.75=\frac{15}{4}

Therefore, n=1x2n=2.75=114\displaystyle \sum_{n=1}^{\infty}x^{2n}=2.75=\frac{11}{4}

(4)(3.75)(2.75)=(4)(154)(114)=41.25\displaystyle (4)(3.75)(2.75)=(4)(\frac{15}{4})(\frac{11}{4})=41.25

So we have: 41.25+2.75=44\displaystyle 41.25+2.75=44
 
Top