logistic_guy
Full Member
- Joined
- Apr 17, 2024
- Messages
- 424
here is the question
Study the infinite series \(\displaystyle \sum_{n=1}^{\infty}\frac{n}{(n+1)!}\) and show that it converges to \(\displaystyle 1\).
my attemb
\(\displaystyle \sum_{n=1}^{\infty}\frac{n}{(n+1)!} = \frac{1}{(1 + 1)!} + \frac{2}{(2 + 1)!} + \frac{3}{(3 + 1)!} + \cdots = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots\)
\(\displaystyle = \frac{1}{2} + \frac{2}{6} + \frac{3}{24} + \cdots = \frac{1}{2} + \frac{1}{3} + \frac{1}{8} + \cdots\)
it don't look like it converge to \(\displaystyle 1\)
Study the infinite series \(\displaystyle \sum_{n=1}^{\infty}\frac{n}{(n+1)!}\) and show that it converges to \(\displaystyle 1\).
my attemb
\(\displaystyle \sum_{n=1}^{\infty}\frac{n}{(n+1)!} = \frac{1}{(1 + 1)!} + \frac{2}{(2 + 1)!} + \frac{3}{(3 + 1)!} + \cdots = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots\)
\(\displaystyle = \frac{1}{2} + \frac{2}{6} + \frac{3}{24} + \cdots = \frac{1}{2} + \frac{1}{3} + \frac{1}{8} + \cdots\)
it don't look like it converge to \(\displaystyle 1\)