How I prove this inequality : If x,y,z =>2, then (y^3+x)(z^3+y)(x^3+z)=>125xyz ?
Online solutions are available, but are somewhat cryptic, at least to me. Start with this:
. . . . .\(\displaystyle f(x)\, =\, x^3\, -\, 4x\, \geq\, 0\, \mbox{ for }\, x\, \geq\, 2\)
(If you're not sure of this inequality, solve for the x-intercepts of the function, and check the graph of the cubic.) This says that:
. . . . .\(\displaystyle x^3\, \geq\, 4x\, \mbox{ for }\, x\, \geq\, 2\)
...and similarly for \(\displaystyle y\) and \(\displaystyle z\). The above leads to:
. . . . .\(\displaystyle y^3\, +\, x\, \geq\, 4y\, +\, x\, =\, (y\, +\, y\, +\, y\, +\, y)\, +\, x\)
Then some "magic" happens. Somehow (?!?) one is expected to consider the following:
. . . . .\(\displaystyle \sqrt[5]{y^4 x\, }\)
Suppose \(\displaystyle x\, \leq\, y\). Then:
. . . . .\(\displaystyle \sqrt[5]{y^4 x\, }\, \leq\, \sqrt[5]{y^5\, }\, =\, y\)
On the other hand, suppose \(\displaystyle x\, >\, y\). Then:
. . . . .\(\displaystyle \sqrt[5]{y^4 x\, }\, <\, \sqrt[5]{x^5\, }\, =\, x\)
Either way, you get:
. . . . .\(\displaystyle (y\, +\, y\, +\, y\, +\, y)\, +\, x\, \geq\, \left(\sqrt[5]{y^4 x\, }\, +\, \sqrt[5]{y^4 x\, }\, +\, \sqrt[5]{y^4 x\, }\, +\, \sqrt[5]{y^4 x\, }\right)\, +\, \sqrt[5]{y^4 x\, }\, =\, 5 \sqrt[5]{y^4 x\, }\)
See where that leads.
![Wink ;) ;)]()