\(\displaystyle \text{Prove that }2^{2n} - 1\text{ is divisible by 3, }\forall \text{ integers n} \geqslant \text{1}\)
\(\displaystyle \text{Show p(a) ['a' is min value of statement]}\)
\(\displaystyle \text{3|2}^{\text{2(1)}} - 1\)
\(\displaystyle \text{ }2^2 - 1 = 3(i)\text{ }[i\text{ is an integer]}\)
\(\displaystyle \text{3 = 3}(i)\)
\(\displaystyle \text{Suppose p(k) k = n}\)
\(\displaystyle 2^{2k} - 1 = 3(i)\text{ }[\text{inductive step]}\)
\(\displaystyle \text{We wish to show p(k + 1) }\)
\(\displaystyle 2^{2(k + 1)} - 1 = 3(i)\text{ }\)
\(\displaystyle \text{ [starting on left hand side]}\)
\(\displaystyle 2^{2(k + 1)} - 1 = 2^{2k + 2} - 1\)
\(\displaystyle \text{ = 2}^\text{2} 2^{2k} - 1\)
\(\displaystyle \text{ = }2^{2k} \bullet 4 - 1\)
\(\displaystyle \text{ = ??????? }\)
\(\displaystyle \text{How do I get there from here, please provide your reasoning}\text{. Thanks!}\)
\(\displaystyle \text{Show p(a) ['a' is min value of statement]}\)
\(\displaystyle \text{3|2}^{\text{2(1)}} - 1\)
\(\displaystyle \text{ }2^2 - 1 = 3(i)\text{ }[i\text{ is an integer]}\)
\(\displaystyle \text{3 = 3}(i)\)
\(\displaystyle \text{Suppose p(k) k = n}\)
\(\displaystyle 2^{2k} - 1 = 3(i)\text{ }[\text{inductive step]}\)
\(\displaystyle \text{We wish to show p(k + 1) }\)
\(\displaystyle 2^{2(k + 1)} - 1 = 3(i)\text{ }\)
\(\displaystyle \text{ [starting on left hand side]}\)
\(\displaystyle 2^{2(k + 1)} - 1 = 2^{2k + 2} - 1\)
\(\displaystyle \text{ = 2}^\text{2} 2^{2k} - 1\)
\(\displaystyle \text{ = }2^{2k} \bullet 4 - 1\)
\(\displaystyle \text{ = ??????? }\)
\(\displaystyle \text{How do I get there from here, please provide your reasoning}\text{. Thanks!}\)