Prove that, for each positive integer n,
\(\displaystyle \sum_{k=1}^{n}\, k(k\, +\, 1)\, =\, \frac{n(n\, +\, 1)(n\, +2\, )}{3}\)
So I try for n = 1:
\(\displaystyle 1(1\, +\, 1)\, =\, \frac{1(1\, +\, 1)(1\, +\, 2)}{3}\)
\(\displaystyle 2\, =\, \frac{1x2x3}{3}\)
\(\displaystyle 2\, =\, \frac{6}{3}\)
\(\displaystyle 2\, =\, 2\)
Now, assume it is true for n:
\(\displaystyle \sum_{k=1}^{n}\, =\, \frac{n(n\, +\, 1)(n\, +\, 2)}{3}\)
Prove it is also true for n+1:
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n(n\, +\, 1)(n\, +\, 2)}{3}\, +\, (n\, +\, 1)\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n(n\, +\, 1)(n\, +\, 2)\, +\, 3(n\, +\, 1)}{3}\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n(n^{2}\, +\, 3n\, +\, 2)\, +\, 3n\, +\, 3}{3}\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n^{3}\, +\, 3n^{2}\, +\, 2n\, +\, 3n\, +\, 3}{3}\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n^{3}\, +\, 3n^{2}\, +\, 5n\, +\, 3}{3}\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n(n^{2}\, +\, 3n\, +\, 5) \, +\, 3} {3}\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n(n\, +\, 2)(n\, +\, 3)\, +\, 3}{3}\)
I'm trying to figure out what im doing wrong, can anyone help me out?
thanks!
\(\displaystyle \sum_{k=1}^{n}\, k(k\, +\, 1)\, =\, \frac{n(n\, +\, 1)(n\, +2\, )}{3}\)
So I try for n = 1:
\(\displaystyle 1(1\, +\, 1)\, =\, \frac{1(1\, +\, 1)(1\, +\, 2)}{3}\)
\(\displaystyle 2\, =\, \frac{1x2x3}{3}\)
\(\displaystyle 2\, =\, \frac{6}{3}\)
\(\displaystyle 2\, =\, 2\)
Now, assume it is true for n:
\(\displaystyle \sum_{k=1}^{n}\, =\, \frac{n(n\, +\, 1)(n\, +\, 2)}{3}\)
Prove it is also true for n+1:
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n(n\, +\, 1)(n\, +\, 2)}{3}\, +\, (n\, +\, 1)\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n(n\, +\, 1)(n\, +\, 2)\, +\, 3(n\, +\, 1)}{3}\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n(n^{2}\, +\, 3n\, +\, 2)\, +\, 3n\, +\, 3}{3}\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n^{3}\, +\, 3n^{2}\, +\, 2n\, +\, 3n\, +\, 3}{3}\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n^{3}\, +\, 3n^{2}\, +\, 5n\, +\, 3}{3}\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n(n^{2}\, +\, 3n\, +\, 5) \, +\, 3} {3}\)
\(\displaystyle \sum_{k=1}^{n+1}\, =\, \frac{n(n\, +\, 2)(n\, +\, 3)\, +\, 3}{3}\)
I'm trying to figure out what im doing wrong, can anyone help me out?
thanks!