I finally solved it:
. . .Let's suppose that (2n + 1) × an < 1 + a + a2 + ... + a2n
. . .and show that (2(n +1) + 1) × an+1 < 1 + a + a2 + ... + a2(n+1)
. . .which implies showing that (2(n +1) + 1) × an+1 – 1 – a2(n+1) < a + a2 + ... + a2n+1
. . .We got (2n + 1) × an < 1 + a + a2 + ... + a2n so [(2n + 1) × an] × a < (1 + a + a2 + ... + a2n) × a
. . .so (2n + 1) × an+1 < a + a2 + a3 ... + a2n+1
. . .We show that (2(n +1) + 1) × an+1 – 1 – a2(n+1) < (2n + 1) × an+1 < a + a2 + a3 ... + a2n+1
. . .(2(n +1) + 1) × an+1 – 1 – a2(n+1) – (2n + 1) × an+1 = –a2n+1 + 2an+1 – 1
. . .= –(an+1 – 1)^2 < 0 so (2(n +1) + 1) × an+1 – 1 – a2(n+1) < a + a2 + a3 ... + a2n+1
. . .Then (2(n +1) + 1) × an+1 < 1 + a + a2 + ... + a2(n+1)
. . .Therefore: (2n + 1) × an < 1 + a + a2 + ... + a2n
thank you for any intended help