48. \lim_{x\to 0} (csc(x)- cot(x))[/tex]
Note that \(\displaystyle csc(x)-cot(x)=tan(\frac{x}{2})\)
\(\displaystyle 52. \lim_{x\to \infty}(xe^{\frac{1}{x}}-x)\)
For this one, we could make a sub by letting t=1/x
This changes the limit to t-->0 and we have
\(\displaystyle \lim_{t\to 0}\frac{e^{t}-1}{t}\)
Now, by L'Hopital, we get \(\displaystyle \lim_{t\to 0}e^{t}\)
Now, what is the limit as t-->0?.
We can do this various ways without L'Hopital.
Express \(\displaystyle e^{t}\) as a derivative using the defintion of a derivative:
\(\displaystyle \frac{d}{dt}[e^{t}]=\lim_{h\to 0}\frac{e^{0+h}-e^{0}}{h}=\lim_{h\to 0}\frac{e^{h}-1}{h}=\)
Check this out:
http://www.ies.co.jp/math/java/calc/lim_e/lim_e.html
Here 's a cool way using algebra and no L'Hopital.
Let \(\displaystyle \lim_{t\to 0}\frac{e^{t}-1}{t}\)
Let \(\displaystyle u=\frac{1}{e^{t}-1}\)
\(\displaystyle \frac{1}{u}=\frac{e^{t}-1}{1}\)
\(\displaystyle 1+\frac{1}{u}=e^{t}\)
\(\displaystyle t=ln(1+\frac{1}{u})\)
\(\displaystyle \lim_{u\to \infty}\frac{1}{uln(1+\frac{1}{u})}\)
\(\displaystyle \lim_{u\to \infty}\frac{1}{ln((1+\frac{1}{u})^{u})}\)
But, note what is inside the parentheses is the limit for e.
We have: \(\displaystyle \frac{1}{ln(e)}=\)
3 different ways to do the same limit. L'Hopital is easiest though.