When finding the indefinite integral I don't understand why one method I tried works but the other doesn't. Can you help explain why the one that I marked as incorrect doesn't work.
CORRECT!
\(\displaystyle \int \, \left(x^2\, +\, 5\right)^3\, dx\)
\(\displaystyle =\, \int\, \left(x^6\, +\, 15x^4\, +\, 75x^2\, +\, 125\right)\, dx\)
\(\displaystyle =\, \int \, x^6\, dx\, +\, \int\, 15x^4\, dx\, +\, \int\, 75x^2\, dx\, +\, \int\, 125\, dx\)
\(\displaystyle =\, \frac{1}{7}x^7\, +\, 3x^5\, +\, 25x^3\, +\, 125x\, +\, C\)
I don't understand why the following doesn't work also???
INCORRECT???
\(\displaystyle \int\, \left(x^2\, +\, 5\right)^3\, dx\)
\(\displaystyle =\, \left(\frac{1}{2x}\right)\left(\frac{1}{4}\right)\left(x^2\, +\, 5\right)^4\, +\, C\)
\(\displaystyle = \left(\frac{1}{8x}\right)\left(x^2\, +\, 5\right)^4\, +\, C\)
\(\displaystyle \mbox{when expanded out this becomes}\)
\(\displaystyle \left(\frac{1}{8x}\right)\left(x^8\, +\, 20x^6\, +\, 50x^4\, +\, 500x^2\, +\, 625\right)\, +\, C\)
\(\displaystyle =\, \frac{1}{8}x^7\, +\, \frac{5}{2}x^5\, +\, \frac{75}{4}x^3\, +\, \frac{125}{2}x\, +\, \frac{625}{8x}\, +\, C\)
CORRECT!
\(\displaystyle \int \, \left(x^2\, +\, 5\right)^3\, dx\)
\(\displaystyle =\, \int\, \left(x^6\, +\, 15x^4\, +\, 75x^2\, +\, 125\right)\, dx\)
\(\displaystyle =\, \int \, x^6\, dx\, +\, \int\, 15x^4\, dx\, +\, \int\, 75x^2\, dx\, +\, \int\, 125\, dx\)
\(\displaystyle =\, \frac{1}{7}x^7\, +\, 3x^5\, +\, 25x^3\, +\, 125x\, +\, C\)
I don't understand why the following doesn't work also???
INCORRECT???
\(\displaystyle \int\, \left(x^2\, +\, 5\right)^3\, dx\)
\(\displaystyle =\, \left(\frac{1}{2x}\right)\left(\frac{1}{4}\right)\left(x^2\, +\, 5\right)^4\, +\, C\)
\(\displaystyle = \left(\frac{1}{8x}\right)\left(x^2\, +\, 5\right)^4\, +\, C\)
\(\displaystyle \mbox{when expanded out this becomes}\)
\(\displaystyle \left(\frac{1}{8x}\right)\left(x^8\, +\, 20x^6\, +\, 50x^4\, +\, 500x^2\, +\, 625\right)\, +\, C\)
\(\displaystyle =\, \frac{1}{8}x^7\, +\, \frac{5}{2}x^5\, +\, \frac{75}{4}x^3\, +\, \frac{125}{2}x\, +\, \frac{625}{8x}\, +\, C\)