galactus said:
Stapel, I worked this integral by hand and then ran it through Maple. Maple confirmed my answer. Yet, Mathematica gives the answer you posted. They're equivalent, I believe.
Yes, the two expressions are equivalent:
. . . . .\(\displaystyle \L \frac{2}{3}\, \left(\,\frac{x\, -\, 1}{x^5}\, \right)^{\frac{3}{2}}\, x^6\, =\, \frac{2}{3}\, \left(\,\frac{x\, -\, 1}{x}\, \right)^{\frac{3}{2}}\,\left(\, \frac{1}{x^4}\, \right)^{\frac{3}{2}}\, x^6\)
. . . . . . . . . . . . . . . . . . . .\(\displaystyle \L =\, \frac{2}{3}\, \left(\,\frac{x\, -\, 1}{x}\, \right)^{\frac{3}{2}}\,\left(\, \frac{1}{x^6}\, \right)\, x^6\)
. . . . . . . . . . . . . . . . . . . .\(\displaystyle \L =\, \frac{2}{3}\, \left(\,\frac{x\, -\, 1}{x}\, \right)\)
galactus said:
One trick is to use the substitution \(\displaystyle \L\\x=\frac{1}{u}\)
I'd have never thought of that substitution. Thank you!
Eliz.