Hello, Ryan!
It would have saved time if you had shown how far you got . . .
\(\displaystyle \L\int \frac{\sqrt{x}}{\sqrt{x}\,-\,3}\,dx\)
Let \(\displaystyle u\,=\,\sqrt{x}\,-\,3\;\;\Rightarrow\;\;\sqrt{x}\,=\,u\,+\,3\;\;\Rightarrow\;\;x\,=\,(u\,+\,3)^2\;\;\Rightarrow\;\;dx\,=\,2(u\,+\,3)\,du\)
Substitute: \(\displaystyle \L\:\int\frac{u\,+\,3}{u}\cdot2(u\,+\,3)\,du \;= \;2\int\frac{(u\,+\,3)^2}{u}\,du \;= \;2\int\frac{u^2\,+\,6u\,+\,9}{u}\,du\)
If you got this far, you're doing fine . . .
Try this . . . \(\displaystyle \L2\int\left(\frac{u^2}{u}\,+\,\frac{6u}{u}\,+\,\frac{9}{u}\right)\,du \;= \;2\int\left(u\,+\,6\,+\,\frac{9}{u}\right)\,du\)
and we get: \(\displaystyle \L\:2\left(\frac{u^2}{2}\,+\,6u\,+\,9\cdot\ln|u|\right)\,+\,C\) . . . then back-substitute.