I have this problem:
. . . . .x-intercepts:
. . . . .x^2 + 3x - 1 = 0
. . . . .x = [-3 ± sqrt(9 + 4)] / 2
. . . . .x = [-3 ± sqrt(13)] / 2
. . . . .y-intercept: (0,-1)
For part b., I've done the following:
. . . . .f'(x) = [(x + 1)(2x + 3) - (x^2 + 3x - 1)(1)] / (x + 1)^2
. . . . .. . . .= (x^2 + 2x + 4) / (x + 1)^2
I am stuck there. I'm not able to get the value of x.
I think i have the intercepts which are:Let f(x) = (x^2 + 3x - 1) / (x + 1). Find the following:
- all interepts.[/*:m:2bfphyar]
- the intervals where f(x) is increasing and decreasing[/*:m:2bfphyar]
- all relative extrema[/*:m:2bfphyar]
- the intervals where f(x) is concave up and down[/*:m:2bfphyar]
- all asymptotes[/*:m:2bfphyar]
- the graph of the function[/*:m:2bfphyar]
. . . . .x-intercepts:
. . . . .x^2 + 3x - 1 = 0
. . . . .x = [-3 ± sqrt(9 + 4)] / 2
. . . . .x = [-3 ± sqrt(13)] / 2
. . . . .y-intercept: (0,-1)
For part b., I've done the following:
. . . . .f'(x) = [(x + 1)(2x + 3) - (x^2 + 3x - 1)(1)] / (x + 1)^2
. . . . .. . . .= (x^2 + 2x + 4) / (x + 1)^2
I am stuck there. I'm not able to get the value of x.