This is a different view of the issue from tkhunny's, but it does not disagree with him.
First, he is fully correct that a regression of even excellent fit may not be a good approximation outside the range of the data used to create the regression equation.
Second, a regression is not a statement of truth, but an approximation. It likely approximates a truth if the relative error terms are all small and uncorrelated and if those errors can reasonably be attributed to errors in the data or to other contributing but ignored factors of very low importance.
Third, you may have reason to know that the true relationship must be such that f(0) = 0, but regression gives a linear equation where f(0) is nowhere close to zero. Then you know that either f(x) is not linear over the entire range of possible values of x or that your data are not typical. What to do? If the relative errors are small and uncorrelated, you can decide to use your regression equation as a good approximation in the range of your data and slightly outside it. If the relative errors are large or correlated, you should consider using a non-linear or a multi-variable model rather than a single variable, linear model. A linear equation in one variable may not have any relationship to reality.