Hello, DriftGhost!
Or you can use a secant-tangent identity:
We have: \(\displaystyle \;\underbrace{\tan^2x}\;=\;\frac{\sqrt{2}}{2}\cdot\sec x\)
Then: \(\displaystyle \;\overbrace{\sec^2x\,-\,1}\;=\;\frac{\sqrt{2}}{2}\cdot\sec x\)
Multiply by 2: \(\displaystyle \;2\cdot\sec^2x\,-\,2\;=\;\sqrt{2}\cdot\sec x\)
And we have the quadratic: \(\displaystyle \;2\cdot\sec^2x \,-\,\sqrt{2}\cdot\sec x\,-\,2\;=\;0\)
Quadratic Formula: \(\displaystyle \:\sec x \;= \;\frac{-(-\sqrt{2})\,\pm\,\sqrt{(-\sqrt{2})^2\,-\,4(2)(-2)}}{2(2)}\;=\;\frac{\sqrt{2}\,\pm\,2\sqrt{5}}{4}\)
We have: \(\displaystyle \,\sec x\:=\:1.47158379\;\;\Rightarrow\;\;x\:\approx\:47.2^o\:=\:0.824\) radians
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
We also have: \(\displaystyle \:\sec x\:=\:-0.764480598\)
But since \(\displaystyle \,|\sec x|\:\geq\:1\), there is no second solution.