Impossible Trig! Need Immediate Help

Usually it is best to express things in sines and cosines.
(tan(x))^2=(sqrt(2)/2)(sec(x))
sin²(x)/cos²(x)=(sqrt(2)/2)(1/cos(x)
sin²(x)=(sqrt(2)/2)*cos(x))
(1-cos²(x))=(sqrt(2)/2)*cos(x)
cos²(x)+(sqrt(2)/2)cos(x)-1 = 0
A quadratic in cos(x)
 
Hello, DriftGhost!

Or you can use a secant-tangent identity:

We have:   tan2x  =  22secx\displaystyle \;\underbrace{\tan^2x}\;=\;\frac{\sqrt{2}}{2}\cdot\sec x

Then:   sec2x1  =  22secx\displaystyle \;\overbrace{\sec^2x\,-\,1}\;=\;\frac{\sqrt{2}}{2}\cdot\sec x

Multiply by 2:   2sec2x2  =  2secx\displaystyle \;2\cdot\sec^2x\,-\,2\;=\;\sqrt{2}\cdot\sec x

And we have the quadratic:   2sec2x2secx2  =  0\displaystyle \;2\cdot\sec^2x \,-\,\sqrt{2}\cdot\sec x\,-\,2\;=\;0

Quadratic Formula: secx  =  (2)±(2)24(2)(2)2(2)  =  2±254\displaystyle \:\sec x \;= \;\frac{-(-\sqrt{2})\,\pm\,\sqrt{(-\sqrt{2})^2\,-\,4(2)(-2)}}{2(2)}\;=\;\frac{\sqrt{2}\,\pm\,2\sqrt{5}}{4}

We have: secx=1.47158379        x47.2o=0.824\displaystyle \,\sec x\:=\:1.47158379\;\;\Rightarrow\;\;x\:\approx\:47.2^o\:=\:0.824 radians

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

We also have: secx=0.764480598\displaystyle \:\sec x\:=\:-0.764480598

But since secx1\displaystyle \,|\sec x|\:\geq\:1, there is no second solution.
 
Top