implicit differientiation of (1+xy)^3 = 3y +5

Re: implicit differientiation

Hello, parsons9!

Did you forget the Product Rule?


Differentiate implicitly: .\(\displaystyle (1+xy)^3 \:= \:3y +5\)

\(\displaystyle \text{We have: }\;3(1+xy)^2\cdot\left(x\!\cdot\!\tfrac{dy}{dx} + 1\!\cdot\!y\right) \;=\;3\,\tfrac{dy}{dx}\)

. . . . . \(\displaystyle 3x(1+xy)^2\,\tfrac{dy}{dx} + 3y(1+xy)^2 \;=\;3\,\tfrac{dy}{dx}\)

. . . . . . . . . \(\displaystyle 3x(1+xy)^2\,\tfrac{dy}{dx} - 3\,\tfrac{dy}{dx} \;=\;-3y(1+xy)^2\)


\(\displaystyle \text{Factor: }\;\;3\bigg[x(1+xy)^2 - 3\bigg]\,\tfrac{dy}{dx} \;=\;-3y(1+xy)^2\)

\(\displaystyle \text{Therefore: }\:\frac{dy}{dx} \;=\;\frac{-3y(1+xy)^2}{3[x(1+xy)^2-3]} \;=\;\frac{y(1+xy)^2}{3-x(1+xy)^2}\)



Edit: Corrected my omission . .
.
 
Re: implicit differientiation

when factored should it be: 3[x(1+xy)^2 -1] dy/dx
if not, where did the square go and why is it still -3?

Thank you for your help! I did forget the product rule.
 
Top