Implicit Differentiation

flyguy03

New member
Joined
Nov 1, 2006
Messages
6
I am trying to use implicit differentiation to find d^2y/dx^2 if x^2y^2-2xy=0.

d/dx(x^2y^2)-2d/dx(xy)

from that I got the 1st derrivative to be (y-2xy^2)/(2x^2y-2x).

I am not sure where to go from there.[/code]
 
\(\displaystyle \L\\x^{2}y^{2}-2xy=0\)

\(\displaystyle \L\\x^{2}2y\frac{dy}{dx}+2xy^{2}-(2x\frac{dy}{dx}+2y)=0\)

\(\displaystyle \L\\\frac{dy}{dx}=\frac{-2xy^{2}+2y}{2x^{2}y-2x}\)

\(\displaystyle \L\\\frac{-2y\sout{(xy-1)}}{2x\sout{(xy-1)}}=\frac{-y}{x}\)

Now, differentiate -y/x, quotient rule:

\(\displaystyle \L\\\frac{x\overbrace{(\frac{-dy}{dx})}^{\text{Remember,\\dy/dx=-y/x}}-(-y)}{x^{2}}=\frac{-x(\frac{-y}{x})+y}{x^{2}}=\frac{2y}{x^{2}}\)
 
Top