Please could someone check if I have done the following correctly, Thanks:
Use implicit differentiation to find dy/dx.
\(\displaystyle \L\\\begin{array}{l}
x^3 + \sqrt {2xy} + y^2 = 12 \\
\frac{{dy}}{{dx}} \\
3x^2 + \frac{1}{{2\sqrt {2xy} }}(2xy' + 2y) + 2yy' = 0 \\
- 3x^2 - \frac{{2y}}{{2\sqrt {2xy} }} = \frac{{2xy'}}{{2\sqrt {2xy} }} + 2yy' \\
- 3x^2 - \frac{{2y}}{{2\sqrt {2xy} }} = y'\left( {\frac{{2x}}{{2\sqrt {2xy} }} + 2y} \right) \\
- 3x^2 - \frac{{2y}}{{2\sqrt {2xy} }} = y'\left( {\frac{{x + 2y\sqrt {2xy} }}{{\sqrt {2xy} }}} \right) \\
\frac{{ - 3x^2 (2\sqrt {2xy} ) - 2y}}{{2\sqrt {2xy} }} = y'\left( {\frac{{x + 2y\sqrt {2xy} }}{{\sqrt {2xy} }}} \right) \\
\left( {\frac{{ - 3x^2 (2\sqrt {2xy} ) - 2y}}{{2\sqrt {2xy} }}} \right)\left( {\frac{{\sqrt {2xy} }}{{x + 2y\sqrt {2xy} }}} \right) = y' \\
\left( {\frac{{ - 6x^2 y\sqrt {2xy} ) - 2xy^2 }}{{x\sqrt {xy} + 4y^2 x}}} \right) = y' \\
\left( {\frac{{2y( - 3x^2 \sqrt {2xy} - 2y}}{{\sqrt {xy} + 4y^2 }}} \right) = y' \\
\end{array}\)
Thanks for your time, sophie
Use implicit differentiation to find dy/dx.
\(\displaystyle \L\\\begin{array}{l}
x^3 + \sqrt {2xy} + y^2 = 12 \\
\frac{{dy}}{{dx}} \\
3x^2 + \frac{1}{{2\sqrt {2xy} }}(2xy' + 2y) + 2yy' = 0 \\
- 3x^2 - \frac{{2y}}{{2\sqrt {2xy} }} = \frac{{2xy'}}{{2\sqrt {2xy} }} + 2yy' \\
- 3x^2 - \frac{{2y}}{{2\sqrt {2xy} }} = y'\left( {\frac{{2x}}{{2\sqrt {2xy} }} + 2y} \right) \\
- 3x^2 - \frac{{2y}}{{2\sqrt {2xy} }} = y'\left( {\frac{{x + 2y\sqrt {2xy} }}{{\sqrt {2xy} }}} \right) \\
\frac{{ - 3x^2 (2\sqrt {2xy} ) - 2y}}{{2\sqrt {2xy} }} = y'\left( {\frac{{x + 2y\sqrt {2xy} }}{{\sqrt {2xy} }}} \right) \\
\left( {\frac{{ - 3x^2 (2\sqrt {2xy} ) - 2y}}{{2\sqrt {2xy} }}} \right)\left( {\frac{{\sqrt {2xy} }}{{x + 2y\sqrt {2xy} }}} \right) = y' \\
\left( {\frac{{ - 6x^2 y\sqrt {2xy} ) - 2xy^2 }}{{x\sqrt {xy} + 4y^2 x}}} \right) = y' \\
\left( {\frac{{2y( - 3x^2 \sqrt {2xy} - 2y}}{{\sqrt {xy} + 4y^2 }}} \right) = y' \\
\end{array}\)
Thanks for your time, sophie