JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser .
Implicit differentiation - Multivariable calculus
Guys l just want to check if this is correct ?
Capture.JPG
74.7 KB
· Views: 236
Hello, chengeto!
Your formula is correct . . . your partial differentiation isn't.
\(\displaystyle \text{3. Let: }\:u \;=\;e^{s+t}\:\text{ and }\:\begin{Bmatrix}x^3t + x^2t -4 &=& 0 & (A) \\ e^s - x^2s^3 + 1 &=& 0 & (B) \end{Bmatrix} \qquad \text{Find: }\:\frac{du}{dx}\)
\(\displaystyle \text{Formula: }\;\frac{du}{dx} \;=\;\frac{\partial u}{\partial s}\cdot\frac{ds}{dx} + \frac{\partial u}{\partial t}\cdot\frac{dt}{dx}\) . [1]
\(\displaystyle \text{We have: }\:\boxed{\begin{array}{ccc}\dfrac{\partial u}{\partial s} &=& e^{s+t} \\ \\[-3mm] \dfrac{\partial u}{\partial t} &=& e^{s+t} \end{array}}\) . [2]
\(\displaystyle \text{Differentiate (A) w.r.t. }x\!:\quad x^3\frac{dt}{dx} \;+\; 3x^2\;+\; x^2\frac{dt}{dx} \;+\; 2xt\:=\:0 \quad\Rightarrow\quad x^3\frac{dt}{dx} \;+\; x^2\frac{dt}{dx} \;=\;-(3x^2 \;+\; 2xt)\)
. . . . . . . . . . . . . . . . . . . \(\displaystyle x^2(x+1)\frac{dt}{dx} \;=\;-x(3x+2t) \quad\Rightarrow\quad \boxed{\frac{dt}{dx} \;=\;-\frac{3x+2t}{x(x+1)}}\) . [3]
\(\displaystyle \text{Differentiate (B) w.r.t. }x\!:\quad e^s\frac{ds}{dx}\;-\;3x^2s^2\frac{ds}{dx}\;-\;2xs^3 \;\;=\;\;0 \quad\Rightarrow\quad e^s\frac{ds}{dx}\;-\;3x^2s^2\frac{ds}{dx} \;\;=\;\;2xs^3\)
. . . . . . . . . . . . . . . . . . . . . . . . \(\displaystyle \left(e^x-3x^2s^2\right)\frac{ds}{dx} \;=\;2xs^3 \quad\Rightarrow\quad \boxed{\frac{ds}{dx} \;=\;\frac{2xs^2}{e^s-3x^2s^2}}\) . [4]
Substitute [2] , [3] , [4] into [1] :
. . \(\displaystyle \frac{du}{dx}\;\;=\;\;\left(e^{s+t}\right)\left[\frac{2xs^2}{e^s-3x^2s^2}\right] + \left(e^{s+t}\right)\left[-\frac{3x+2t}{x(x+1)}\right] \;\;=\;\;e^{s+t}\left[\frac{2xs^2}{e^s-3x^2s^2} - \frac{3x+2t}{x(x+1)}\right]\)
soroban said:
Hello, chengeto!
Your formula is correct . . . your partial differentiation isn't.
\(\displaystyle \text{3. Let: }\:u \;=\;e^{s+t}\:\text{ and }\:\begin{Bmatrix}x^3t + x^2t -4 &=& 0 & (A) \\ e^s - x^2s^3 + 1 &=& 0 & (B) \end{Bmatrix} \qquad \text{Find: }\:\frac{du}{dx}\)
\(\displaystyle \text{Formula: }\;\frac{du}{dx} \;=\;\frac{\partial u}{\partial s}\cdot\frac{ds}{dx} + \frac{\partial u}{\partial t}\cdot\frac{dt}{dx}\) . [1]
\(\displaystyle \text{We have: }\:\boxed{\begin{array}{ccc}\dfrac{\partial u}{\partial s} &=& e^{s+t} \\ \\[-3mm] \dfrac{\partial u}{\partial t} &=& e^{s+t} \end{array}}\) . [2]
\(\displaystyle \text{Differentiate (A) w.r.t. }x\!:\quad x^3\frac{dt}{dx} \;+\; 3x^2\;+\; x^2\frac{dt}{dx} \;+\; 2xt\:=\:0 \quad\Rightarrow\quad x^3\frac{dt}{dx} \;+\; x^2\frac{dt}{dx} \;=\;-(3x^2 \;+\; 2xt)\)
. . . . . . . . . . . . . . . . . . . \(\displaystyle x^2(x+1)\frac{dt}{dx} \;=\;-x(3x+2t) \quad\Rightarrow\quad \boxed{\frac{dt}{dx} \;=\;-\frac{3x+2t}{x(x+1)}}\) . [3]
\(\displaystyle \text{Differentiate (B) w.r.t. }x\!:\quad e^s\frac{ds}{dx}\;-\;3x^2s^2\frac{ds}{dx}\;-\;2xs^3 \;\;=\;\;0 \quad\Rightarrow\quad e^s\frac{ds}{dx}\;-\;3x^2s^2\frac{ds}{dx} \;\;=\;\;2xs^3\)
. . . . . . . . . . . . . . . . . . . . . . . . \(\displaystyle \left(e^x-3x^2s^2\right)\frac{ds}{dx} \;=\;2xs^3 \quad\Rightarrow\quad \boxed{\frac{ds}{dx} \;=\;\frac{2xs^2}{e^s-3x^2s^2}}\) . [4]
Substitute [2] , [3] , [4] into [1] :
. . \(\displaystyle \frac{du}{dx}\;\;=\;\;\left(e^{s+t}\right)\left[\frac{2xs^2}{e^s-3x^2s^2}\right] + \left(e^{s+t}\right)\left[-\frac{3x+2t}{x(x+1)}\right] \;\;=\;\;e^{s+t}\left[\frac{2xs^2}{e^s-3x^2s^2} - \frac{3x+2t}{x(x+1)}\right]\)
Thanks