\(\displaystyle Given: \ -2x^{2}-xy-4y^{3}+110 \ = \ 0, \ and \ point(-2,3)\)
\(\displaystyle Find \ line \ tangent \ to \ f(x,y) \ at \ the \ point.\)
\(\displaystyle Implicit \ differentiation \ yields: \ -4x-[y+xy']-12y^{2}y'+0 \ = \ 0\)
\(\displaystyle -4x-y-xy'-12y^{2}y' \ = \ 0 \ \implies \ y' \ = \ -\frac{4x+y}{x+12y^{2}}, \ at \ (-2,3), \ m \ = \ \frac{5}{106}.\)
\(\displaystyle Hence, \ y-3 \ = \ \frac{5}{106}(x+2), \ y \ = \ \frac{5x+328}{106}.\)
\(\displaystyle See \ graph.\)
[attachment=0:1gseb7b0]zero.jpg[/attachment:1gseb7b0]