Could someone see if I have made any errors on the following question. Thanks
Use implicit differentiation to find dy/dx in each case:
\(\displaystyle \L\\\begin{array}{l}
y = \frac{{\left( {2x} \right)^{2/3} \left( {x + 5} \right)^{3/4} }}{{\left( {3 - x} \right)^4 }} \\
\\
y\left( {3 - x} \right)^4 = \left( {2x} \right)^{2/3} \left( {x + 5} \right)^{3/4} \\
\\
\frac{{dy}}{{dx}} \\
\\
y'\left( {3 - x} \right)^4 + y4(3 - x)^3 \left( 1 \right) = \frac{2}{3}\left( {2x} \right)^{ - 1/3} 2\left( {x + 5} \right)^{3/4} + \left( {2x} \right)^{2/3} \frac{3}{4}\left( {x + 5} \right)^{ - 1/4} \left( 1 \right) \\
\\
y'\left( {3 - x} \right)^4 = \frac{2}{3}\left( {2x} \right)^{ - 1/3} 2\left( {x + 5} \right)^{3/4} + \left( {2x} \right)^{2/3} \frac{3}{4}\left( {x + 5} \right)^{ - 1/4} - y4(3 - x)^3 \\
\\
y'\left( {3 - x} \right)^4 = \left( {2x} \right)^{ - 1/3} \left( {x + 5} \right)^{ - 1/4} \left( {\frac{4}{3}\left( {x + 5} \right) + \frac{3}{4}\left( {2x} \right)} \right) - y4(3 - x)^3 \\
\\
y' = \frac{{\left( {2x} \right)^{ - 1/3} \left( {x + 5} \right)^{ - 1/4} \left( {\frac{4}{3}\left( {x + 5} \right) + \frac{3}{4}\left( {2x} \right)} \right) - y4(3 - x)^3 }}{{\left( {3 - x} \right)^4 }} \\
\\
y' = \frac{{\left( {2x} \right)^{ - 1/3} \left( {x + 5} \right)^{ - 1/4} \left( {\frac{4}{3}\left( {x + 5} \right) + \frac{3}{4}\left( {2x} \right)} \right)}}{{\left( {3 - x} \right)^4 }} - \frac{{y4}}{{\left( {3 - x} \right)}} \\
\\
y' = \frac{{\left( {2x} \right)^{ - 1/3} \left( {x + 5} \right)^{ - 1/4} \left( {\frac{{17x}}{6} + \frac{{20}}{3}} \right)}}{{\left( {3 - x} \right)^4 }} - \frac{{y4}}{{\left( {3 - x} \right)}} \\
\\
y' = \frac{{\left( {\frac{{17x}}{6} + \frac{{20}}{3}} \right)}}{{\left( {\sqrt[3]{{2x}}} \right)\left( {\sqrt[4]{{x + 5}}} \right)\left( {3 - x} \right)^4 }} - \frac{{y4}}{{\left( {3 - x} \right)}} \\
\end{array}\)
Thanks Sophie
Use implicit differentiation to find dy/dx in each case:
\(\displaystyle \L\\\begin{array}{l}
y = \frac{{\left( {2x} \right)^{2/3} \left( {x + 5} \right)^{3/4} }}{{\left( {3 - x} \right)^4 }} \\
\\
y\left( {3 - x} \right)^4 = \left( {2x} \right)^{2/3} \left( {x + 5} \right)^{3/4} \\
\\
\frac{{dy}}{{dx}} \\
\\
y'\left( {3 - x} \right)^4 + y4(3 - x)^3 \left( 1 \right) = \frac{2}{3}\left( {2x} \right)^{ - 1/3} 2\left( {x + 5} \right)^{3/4} + \left( {2x} \right)^{2/3} \frac{3}{4}\left( {x + 5} \right)^{ - 1/4} \left( 1 \right) \\
\\
y'\left( {3 - x} \right)^4 = \frac{2}{3}\left( {2x} \right)^{ - 1/3} 2\left( {x + 5} \right)^{3/4} + \left( {2x} \right)^{2/3} \frac{3}{4}\left( {x + 5} \right)^{ - 1/4} - y4(3 - x)^3 \\
\\
y'\left( {3 - x} \right)^4 = \left( {2x} \right)^{ - 1/3} \left( {x + 5} \right)^{ - 1/4} \left( {\frac{4}{3}\left( {x + 5} \right) + \frac{3}{4}\left( {2x} \right)} \right) - y4(3 - x)^3 \\
\\
y' = \frac{{\left( {2x} \right)^{ - 1/3} \left( {x + 5} \right)^{ - 1/4} \left( {\frac{4}{3}\left( {x + 5} \right) + \frac{3}{4}\left( {2x} \right)} \right) - y4(3 - x)^3 }}{{\left( {3 - x} \right)^4 }} \\
\\
y' = \frac{{\left( {2x} \right)^{ - 1/3} \left( {x + 5} \right)^{ - 1/4} \left( {\frac{4}{3}\left( {x + 5} \right) + \frac{3}{4}\left( {2x} \right)} \right)}}{{\left( {3 - x} \right)^4 }} - \frac{{y4}}{{\left( {3 - x} \right)}} \\
\\
y' = \frac{{\left( {2x} \right)^{ - 1/3} \left( {x + 5} \right)^{ - 1/4} \left( {\frac{{17x}}{6} + \frac{{20}}{3}} \right)}}{{\left( {3 - x} \right)^4 }} - \frac{{y4}}{{\left( {3 - x} \right)}} \\
\\
y' = \frac{{\left( {\frac{{17x}}{6} + \frac{{20}}{3}} \right)}}{{\left( {\sqrt[3]{{2x}}} \right)\left( {\sqrt[4]{{x + 5}}} \right)\left( {3 - x} \right)^4 }} - \frac{{y4}}{{\left( {3 - x} \right)}} \\
\end{array}\)
Thanks Sophie