Implicit Diff Problem

Jason76

Senior Member
Joined
Oct 19, 2012
Messages
1,180
Post Edited 9/27/13

Solving for y'

\(\displaystyle f(x) = 2x^{3} + x^{2}y - xy^{3} = 3\)

\(\displaystyle 6x^{2} + y(2x) + x^{2}(1)y' - y^{3}(1) + x(3y^{2})y' = 0\)

\(\displaystyle 6x^{2} + 2xy + x^{2}y' - y^{3} + 3xy^{2}y' = 0\)

\(\displaystyle 6x^{2} + 2xy - y^{3} + x^{2}y' + 3xy^{2}y' = 0\)

\(\displaystyle 6x^{2} + 2xy - y^{3} + y'(x^{2} + 3xy^{2}) = 0\)

\(\displaystyle y'(x^{2} + 3xy^{2}) = -6x^{2} - 2xy + y^{3}\)

\(\displaystyle y' = \dfrac{ -6x^{2} - 2xy + y^{3}}{x^{2} + 3xy^{2}}\)
 
Last edited:
Your second step is incorrect. You have to use the power rule to differentiate x^2 * y. The derivative of that term is: 2xy + dy/dx * x^2 . You made the same mistake with another term. When performing implicit differentiation this way, do not treat y as a constant. It is a variable, just like x, and it can be differentiated according to the same rules.

A shortcut to implicit differentiation is to use the result of the Implicit Function Theorem. According to that, the implicit derivative of a function of x and y is -f'(x)/f'(y), where f'(x) is the derivative of f(x) with respect to x, and f'(y) is the derivative of f(y) with respect to y.

First move all the terms to the left side, = 0. Then differentiate each term that contains x, treating y as a constant, as the numerator. Negate the numerator. Differentiate each term that contains y, treating x as a constant, as the denominator.

(I don't know the Latex code.)

2x^3 + x^2 *y - xy^3 -3 = 0

- (6x^2 +2xy -y^3)/(x^2 - 3xy^2) = (-6x^2 -2xy + y^3)/x(x-3y^2)
 
Last edited:
Solving for y'

\(\displaystyle f(x) = 2x^{3} + x^{2}y - xy^{3} = 3\)

If f(x) = 3 → f'(x) = 0

\(\displaystyle f'(x) = 6x^{2} + 2xyy' - 3y^{2}y' = 0\)

\(\displaystyle f'(x) = 2xyy' - 3y^{2}y' - 3y^{2}y' = -6x^{2}\)

\(\displaystyle f'(x) = y'y(2x - 3y) = -6x^{2}\)

\(\displaystyle f'(x) = y'y = \dfrac{ -6x^{2}}{(2x - 3y)} \)

\(\displaystyle f'(x) = yy'(\dfrac{1}{y}) = \dfrac{ -6x^{2}}{(2x - 3y)} (\dfrac{1}{y}) \)

\(\displaystyle f'(x) = y' = \dfrac{ -6x^{2}}{(2x - 3y^{2})}\):confused:
.
 
\(\displaystyle f(x) = 2x^{3} + x^{2}y - xy^{3} = 3\)

\(\displaystyle f'(x) = 2x^{3} + y(2x)y' + x^{2}(1)y' - y^{3}(1)y' + x(3y^{2})y' = 0\)

\(\displaystyle f'(x) = 2x^{3} + 2xyy' + x^{2}y' - y^{3}y' + 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 2x^{3} + y'(2xy - + x^{2}y' - y^{3} + 3xy^{2}= 0\)

\(\displaystyle f'(x) = 2x^{3} + y'(2xy + x^{2}y' - y^{3} + 3xy^{2}) = x^{2}\)

\(\displaystyle f'(x) = y'(2xy + x^{2}y' - y^{3} + 3xy^{2}) = x^{2}\)

\(\displaystyle y' = \dfrac{x^{2}}{2xy + x^{2}y' - y^{3} + 3xy^{2}}\):confused:
 
Last edited:
\(\displaystyle f(x) = 2x^{3} + x^{2}y - xy^{3} = 3\)

\(\displaystyle f'(x) = 2x^{3} + y(2x)y' + x^{2}(1)y' - y^{3}(1)y' + x(3y^{2})y' = 0\) .............. Incorrect .................should be

\(\displaystyle 6x^{2} + y(2x) + x^{2}(1)y' - y^{3}(1) - x(3y^{2})y' = 0\)

:confused:
.
 
Solving for y'

\(\displaystyle f(x) = 2x^{3} + x^{2}y - xy^{3} = 3\)

\(\displaystyle f'(x) = 2x^{3} + y(2x) + x^{2}(1)y' - y^{3}(1) + x(3y^{2})y' = 0\)

\(\displaystyle f'(x) = 2x^{3} + 2xy + x^{2}y' - y^{3} + 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 2x^{3} + 2xy - y^{3} + x^{2}y' + 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 2x^{3} + 2xy - y^{3} + y'(x^{2} + 3xy^{2}) = 0\)

\(\displaystyle f'(x) = y'(x^{2} + 3xy^{2}) = -2x^{3} - 2xy + y^{3}\)
 
Last edited:
Solving for y'

\(\displaystyle f(x) = 2x^{3} + x^{2}y - xy^{3} = 3\)

\(\displaystyle f'(x) = 2x^{3} + y(2x) + x^{2}(1)y' - y^{3}(1) + x(3y^{2})y' = 0\) DUDE, WRONG! SEE SKHAN'S POST ABOVE!

\(\displaystyle f'(x) = 2x^{3} + 2xy + x^{2}y' - y^{3} + 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 2x^{3} + 2xy - y^{3} + x^{2}y' + 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 2x^{3} + 2xy - y^{3} + y'(x^{2} + 3xy^{2}) = 0\)

\(\displaystyle f'(x) = y'(x^{2} + 3xy^{2}) = -2x^{3} - 2xy + y^{3}\)

.
 
Post Edited 9/27/13

Solving for y'

\(\displaystyle f(x) = 2x^{3} + x^{2}y - xy^{3} = 3\)

\(\displaystyle f'(x) = 6x^{2} + y(2x) + x^{2}(1)y' - y^{3}(1) + x(3y^{2})y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy + x^{2}y' - y^{3} + 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy - y^{3} + x^{2}y' + 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy - y^{3} + y'(x^{2} + 3xy^{2}) = 0\)

\(\displaystyle f'(x) = y'(x^{2} + 3xy^{2}) = -6x^{2} - 2xy + y^{3}\)

\(\displaystyle y' = \dfrac{ -6x^{2} - 2xy + y^{3}}{x^{2} + 3xy^{2}}\)
 
Last edited:
Post Edited 9/27/13

Solving for y'

\(\displaystyle f(x) = 2x^{3} + x^{2}y - xy^{3} = 3\)

\(\displaystyle f'(x) = 6x^{2} + y(2x) + x^{2}(1)y' - y^{3}(1) + x(3y^{2})y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy + x^{2}y' - y^{3} + 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy - y^{3} + x^{2}y' + 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy - y^{3} + y'(x^{2} + 3xy^{2}) = 0\)

\(\displaystyle f'(x) = y'(x^{2} + 3xy^{2}) = -6x^{2} - 2xy + y^{3}\)

\(\displaystyle y' = \dfrac{ -6x^{2} - 2xy + y^{3}}{x^{2} + 3xy^{2}}\)

I believe SKhan had a typo in his derivation:

\(\displaystyle f'(x) = 6x^{2} + y(2x) + x^{2}(1)y' - y^{3}(1) - x(3y^{2})y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy + x^{2}y' - y^{3} - 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy - y^{3} + x^{2}y' - 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy - y^{3} + y'(x^{2} - 3xy^{2}) = 0\)

\(\displaystyle f'(x) = y'(x^{2} - 3xy^{2}) = -6x^{2} - 2xy + y^{3}\)

\(\displaystyle y' = \dfrac{ -6x^{2} - 2xy + y^{3}}{x^{2} - 3xy^{2}}\)
 
I believe SKhan had a typo in his derivation:

\(\displaystyle f'(x) = 6x^{2} + y(2x) + x^{2}(1)y' - y^{3}(1) - x(3y^{2})y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy + x^{2}y' - y^{3} - 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy - y^{3} + x^{2}y' - 3xy^{2}y' = 0\)

\(\displaystyle f'(x) = 6x^{2} + 2xy - y^{3} + y'(x^{2} - 3xy^{2}) = 0\)

\(\displaystyle f'(x) = y'(x^{2} - 3xy^{2}) = -6x^{2} - 2xy + y^{3}\)

\(\displaystyle y' = \dfrac{ -6x^{2} - 2xy + y^{3}}{x^{2} - 3xy^{2}}\)

No, it was my mistake. I did some editing on some posts.
 
Sorry, but my online homework still says it's wrong. I wonder what is the problem?

Oh, wait. Never mind. I just typed it in wrong. :)
 
Last edited:
Top