How about this?
\(\displaystyle e^{x/y} = 3x - y\)
\(\displaystyle \ln(e^{x/y}) = \ln(3x - y)\)
\(\displaystyle \dfrac{x}{y} = \ln(3x - y)\)
\(\displaystyle \dfrac{[y][1] - [x][y']}{[y]^{2}} = \dfrac{3y'}{3x - y}\)
\(\displaystyle \dfrac{y - xy'}{[y]^{2}} = \dfrac{3y'}{3x - y}\)
\(\displaystyle y - xy' = \dfrac{3y'(y^{2})}{3x - y}\)
\(\displaystyle (3x - y)(y - xy') = 3y'(y^{2})\)
\(\displaystyle 3xy + 3x^{2}y' - y^{2} + xyy' = 3y'(y^{2})\) ??
\(\displaystyle \dfrac{3xy + 3x^{2}y' - y^{2} + xyy'}{y^{2}} = 3y'\)
\(\displaystyle \dfrac{3xy + 3x^{2}y' - y^{2}}{y^{2}} = 3y' - xyy'\)
\(\displaystyle \dfrac{3xy + 3x^{2}y' - y^{2}}{y^{2}} = y'[3 - xy]\)
\(\displaystyle \dfrac{3xy + 3x^{2}y' - y^{2}}{(y^{2})(3 - xy)} = y'\)
Pushed to the other side as:
\(\displaystyle y' = \dfrac{3xy + 3x^{2}y' - y^{2}}{(y^{2})(3 - xy)}\) ??
\(\displaystyle y' = \dfrac{-6 - 8 - 1}{6 - 8}\)
\(\displaystyle y' = \dfrac{-15}{-2}\)
\(\displaystyle y' = \dfrac{15}{2}\)
\(\displaystyle y - 4 = \dfrac{15}{2}(x - 3)\)
\(\displaystyle y - 4 = \dfrac{15}{2}x -\dfrac{45}{2}\) ??