I denote with [imath]\mathcal{P}(T)[/imath] the set of subsets of a set [imath]T[/imath]. My textbook proves that for any given sets [imath]A,B[/imath] it is [imath]\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A\cup B)[/imath] using the following argument: let [imath]X \in \mathcal{P}(A) \cup \mathcal{P}(B)[/imath], then [imath]X \in \mathcal{P}(B) \lor X \in \mathcal{P}(B)[/imath]. Hence, [imath]X \subseteq A \lor X \subseteq B[/imath] and so [imath]X \subseteq A\cup B[/imath]. That is, [imath]X \in \mathcal{P}(A \cup B)[/imath].
I came up with this other argument: since it is [imath]A \subseteq A \cup B[/imath] and [imath]B \subseteq A \cup B[/imath], it is [imath]\mathcal{P}(A) \subseteq \mathcal{P}(A \cup B)[/imath] and [imath]\mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)[/imath]. Since union preserves inclusions and inclusion is idempotent, it is [imath]\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B) \cup \mathcal{P}(A \cup B) = \mathcal{P}(A \cup B)[/imath]. Is my proof valid too?
I came up with this other argument: since it is [imath]A \subseteq A \cup B[/imath] and [imath]B \subseteq A \cup B[/imath], it is [imath]\mathcal{P}(A) \subseteq \mathcal{P}(A \cup B)[/imath] and [imath]\mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)[/imath]. Since union preserves inclusions and inclusion is idempotent, it is [imath]\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B) \cup \mathcal{P}(A \cup B) = \mathcal{P}(A \cup B)[/imath]. Is my proof valid too?