Imaginary numbers: express cos(5theta) in terms of....

G

Guest

Guest
use the relationship eiθ=cosθ+isinθ\displaystyle e^{i\theta}=cos\theta+isin\theta
Express \(\displaystyle \L\cos5\theta\) in the terms of \(\displaystyle \L\cos\theta\)
And show that x=cos(110π)\displaystyle (\frac{1}{10}\pi) is a root of 16x4+20x2+5=0\displaystyle 16x^4+20x^2+5=0
Thanks :)
 
Re: Imaginary numbers

Hello, atomos!

Here's the first one . . .

Use the relationship: eiθ=cosθ+isinθ\displaystyle \,e^{i\theta}\:=\:\cos\theta\,+\,i\cdot\sin\theta
Express cos5θ\displaystyle \cos5\theta in the terms of cosθ\displaystyle \cos\theta
That relationshp says: ei(5θ)  =  cos(5θ)+isin(5θ)  \displaystyle \,e^{i(5\theta)}\;=\;\cos(5\theta)\,+\,i\cdot\sin(5\theta)\; [1]


We also have: ei5θ  =  (eiθ)5  =  (cosθ+isinθ)5\displaystyle \,e^{i5\theta}\;=\;\left(e^{i\theta}\right)^5\;=\;(\cos\theta\,+\,i\cdot\sin\theta)^5

    =  cos5θ+5icos4θsinθ10cos3θsin2θ10icos2θsin3θ+5cosθsin4θ+isin5θ\displaystyle \;\;= \;\cos^5\theta\,+\,5i\cdot\cos^4\theta\cdot\sin\theta\,-\,10\cdot\cos^3\theta\cdot\sin^2\theta\,-\,10i\cdot\cos^2\theta\cdot\sin^3\theta\,+\,5\cdot\cos\theta\cdot\sin^4\theta\,+\,i\cdot\sin^5\theta

    =  [cos5θ10cos3θsin2θ+5cosθsin4θ]+i[5cos4θsinθ10cos2θsin3θ+sin5θ]  \displaystyle \;\;=\;[\cos^5\theta\,-\,10\cdot\cos^3\theta\cdot\sin^2\theta\,+\,5\cdot\cos\theta\cdot\sin^4\theta]\,+\,i[5\cdot\cos^4\theta\cdot\sin\theta\,-\,10\cdot\cos^2\theta\cdot\sin^3\theta\,+\,\sin^5\theta]\; [2]


Equate the real components of [1] and [2]:

cos(5θ)  =  cos5θ10cos3θsin2θ+5cosθsin4θ\displaystyle \cos(5\theta) \;= \;\cos^5\theta\,-\,10\cdot\cos^3\theta\cdot\sin^2\theta\,+\,5\cdot\cos\theta\cdot\sin^4\theta

\(\displaystyle \;\;= \;\cos^5\theta\,-\,10\cdot\cos^3\theta\left(1\,-\,\cos^2\theta\right)\,+\,5\cdot\cos\theta\left(1\,-\,\cos^2\theta)^2\)

    =  cos5θ10cos3θ+10cos5θ+5cosθ10cos3θ+5cos4θ\displaystyle \;\;= \;\cos^5\theta\,-\,10\cdot\cos^3\theta\,+\,10\cdot\cos^5\theta\,+\,5\cdot\cos\theta\,-\,10\cdot\cos^3\theta\,+\,5\cdot\cos^4\theta


Therefore: cos(5θ)  =  16cos5θ20cos3θ+5cosθ\displaystyle \cos(5\theta) \;= \;16\cdot\cos^5\theta\,-\,20\cdot\cos^3\theta\,+\,5\cdot\cos\theta


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

If we equate the imaginary components of [1] and [2], we have:

sin(5θ)  =  5cos4θsinθ10cos2θsin3θ+sin5θ\displaystyle \sin(5\theta) \;= \;5\cdot\cos^4\theta\cdot\sin\theta\,-\,10\cdot\cos^2\theta\cdot\sin^3\theta\,+\,\sin^5\theta

    =  5(1sin2θ)2sinθ10(1sin2θ)sin3θ+sin5θ\displaystyle \;\;=\;5(1\,-\,\sin^2\theta)^2\sin\theta \,- \,10\cdot(1\,-\,\sin^2\theta)\sin^3\theta\,+\,\sin^5\theta

    =  5sinθ10sin3θ+5sin5θ10sin3θ+10sin5θ+sin5θ\displaystyle \;\;=\;5\cdot\sin\theta\,-\,10\cdot\sin^3\theta\,+\,5\cdot\sin^5\theta\,-\,10\cdot\sin^3\theta\,+\,10\cdot\sin^5\theta \,+\,\sin^5\theta


Therefore: sin(5θ)  =  16sin5θ20sin3θ+5sinθ\displaystyle \,\sin(5\theta) \;= \;16\cdot\sin^5\theta\,-\,20\cdot\sin^3\theta\,+\,5\cdot\sin\theta
.
 
Top