Imaginary numbers: express cos(5theta) in terms of....

G

Guest

Guest
use the relationship \(\displaystyle e^{i\theta}=cos\theta+isin\theta\)
Express \(\displaystyle \L\cos5\theta\) in the terms of \(\displaystyle \L\cos\theta\)
And show that x=cos\(\displaystyle (\frac{1}{10}\pi)\) is a root of \(\displaystyle 16x^4+20x^2+5=0\)
Thanks :)
 
Re: Imaginary numbers

Hello, atomos!

Here's the first one . . .

Use the relationship: \(\displaystyle \,e^{i\theta}\:=\:\cos\theta\,+\,i\cdot\sin\theta\)
Express \(\displaystyle \cos5\theta\) in the terms of \(\displaystyle \cos\theta\)
That relationshp says: \(\displaystyle \,e^{i(5\theta)}\;=\;\cos(5\theta)\,+\,i\cdot\sin(5\theta)\;\) [1]


We also have: \(\displaystyle \,e^{i5\theta}\;=\;\left(e^{i\theta}\right)^5\;=\;(\cos\theta\,+\,i\cdot\sin\theta)^5\)

\(\displaystyle \;\;= \;\cos^5\theta\,+\,5i\cdot\cos^4\theta\cdot\sin\theta\,-\,10\cdot\cos^3\theta\cdot\sin^2\theta\,-\,10i\cdot\cos^2\theta\cdot\sin^3\theta\,+\,5\cdot\cos\theta\cdot\sin^4\theta\,+\,i\cdot\sin^5\theta\)

\(\displaystyle \;\;=\;[\cos^5\theta\,-\,10\cdot\cos^3\theta\cdot\sin^2\theta\,+\,5\cdot\cos\theta\cdot\sin^4\theta]\,+\,i[5\cdot\cos^4\theta\cdot\sin\theta\,-\,10\cdot\cos^2\theta\cdot\sin^3\theta\,+\,\sin^5\theta]\;\) [2]


Equate the real components of [1] and [2]:

\(\displaystyle \cos(5\theta) \;= \;\cos^5\theta\,-\,10\cdot\cos^3\theta\cdot\sin^2\theta\,+\,5\cdot\cos\theta\cdot\sin^4\theta\)

\(\displaystyle \;\;= \;\cos^5\theta\,-\,10\cdot\cos^3\theta\left(1\,-\,\cos^2\theta\right)\,+\,5\cdot\cos\theta\left(1\,-\,\cos^2\theta)^2\)

\(\displaystyle \;\;= \;\cos^5\theta\,-\,10\cdot\cos^3\theta\,+\,10\cdot\cos^5\theta\,+\,5\cdot\cos\theta\,-\,10\cdot\cos^3\theta\,+\,5\cdot\cos^4\theta\)


Therefore: \(\displaystyle \cos(5\theta) \;= \;16\cdot\cos^5\theta\,-\,20\cdot\cos^3\theta\,+\,5\cdot\cos\theta\)


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

If we equate the imaginary components of [1] and [2], we have:

\(\displaystyle \sin(5\theta) \;= \;5\cdot\cos^4\theta\cdot\sin\theta\,-\,10\cdot\cos^2\theta\cdot\sin^3\theta\,+\,\sin^5\theta\)

\(\displaystyle \;\;=\;5(1\,-\,\sin^2\theta)^2\sin\theta \,- \,10\cdot(1\,-\,\sin^2\theta)\sin^3\theta\,+\,\sin^5\theta\)

\(\displaystyle \;\;=\;5\cdot\sin\theta\,-\,10\cdot\sin^3\theta\,+\,5\cdot\sin^5\theta\,-\,10\cdot\sin^3\theta\,+\,10\cdot\sin^5\theta \,+\,\sin^5\theta\)


Therefore: \(\displaystyle \,\sin(5\theta) \;= \;16\cdot\sin^5\theta\,-\,20\cdot\sin^3\theta\,+\,5\cdot\sin\theta\)
.
 
Top